## What is an ML program?

A sequence of bindings from names to expressions.
Build powerful progs by composing simple constructs.

## Build rich exprs from simple exprs

Build rich types from simple types


Example, extended

```
fun pow (x : int, y : int) =
    if y=0
    then 1
    else x * pow(x,y-1)
fun cube (x : int) =
    pow (x,3)
val sixtyfour = cube 4
val fortytwo = pow (2,2+2) + pow (4,2) + cube(2) + 2
```


## Some gotchas

## Three common "gotchas"

- Bad error messages if you mess up function-argument syntax
- The use of * in type syntax is not multiplication
- Example: int * int -> int
- In expressions, * is multiplication: $\mathbf{x}$ * pow ( $\mathbf{x}, \mathbf{y}^{-1}$ )
- Cannot refer to later function bindings
- That's simply ML's rule
- Helper functions must come before their uses
- Need special construct for mutual recursion (later)

How to talk about functions precisely?

## Recursion

- If you're not yet comfortable with recursion, you will be soon © - Will use for most functions taking or returning lists
- "Makes sense" because calls to same function solve "simpler" problems
- Recursion more powerful than loops
- We won't use a single loop in ML
- Loops often (not always) obscure simple, elegant solutions

3 Step ML Language Construct Recipe


RECIPES

## 3 Step ML Language Construct Recipe

## 1. Syntax

- How do we write programs with this construct?

2. Typechecking Rules (Static Semantics)

- When is use of this construct well typed?

3. Evaluation (Dynamic Semantics)

- What happens when I run this construct?


## More on type-checking

```
fun x0 (x1:t1, .. , xn : tn) = e
```

- New kind of type: (t1 * ... * tn) -> $t$
- Result type on right
- The overall type-checking result is to give $\mathbf{x 0} 0$ this type in rest of program (unlike Java, not for earlier bindings)
- Arguments can be used only in e (unsurprising)
- Because evaluation of a call to $\mathbf{x 0}$ will return result of evaluating $e$, the return type of $\mathbf{x 0}$ is the type of $e$
- The type-checker "magically" figures out $t$ if such a $t$ exists
- Later lecture: Requires some cleverness due to recursion
- More magic after hw1: Later can omit argument types too


## Function bindings: 3 step recipe

1. Syntax: fun $x 0(x 1: t 1, \ldots, x n: t n)=e$ - (Will generalize in later lecture)

3 Evaluation: A function is a value! (No evaluation yet)

- Adds $\mathbf{x 0}$ to environment so later expressions can call it
- (Function-call semantics will also allow recursion)

2 Type-checking:

- Adds binding x0 : (t1 * ... * tn) $->$ t if:
- Can type-check body e to have type $t$ in the static environment containing:
- "Enclosing" static environment (earlier bindings)
- $x 1: t 1, \ldots, x n: t n \quad$ (arguments with their types)
- x0 : (t1 * ... * tn) $->\mathrm{t}$ (for recursion)


## Function Calls

A new kind of expression: 3 questions

1. Syntax: e0 (e1,...,en)

- (Will generalize later)
- Parentheses optional if there is exactly one argument

2. Type-checking:

If:

- eo has some type ( t 1 * ... * tn) -> t
- e1 has type $\mathrm{t} 1, \ldots$, en has type tn

Then:

- e0 (e1,...,en) has type $t$

Example: pow ( $\mathbf{x}, \mathrm{y}-1$ ) in previous example has type int

## Function-calls continued

$$
e 0(e 1, \ldots, e n)
$$

3. Evaluation:
A. (Under current dynamic environment,) evaluate e0 to a function fun $x 0$ ( $x 1: t 1, \ldots, x n: t n)=e$

- Since call type-checked, result will be a function
B. (Under current dynamic environment,) evaluate arguments to values v1, ..., vn
C. Result is evaluation of $\boldsymbol{e}$ in an environment extended to map x1 to $\mathbf{v 1}, \ldots, \mathrm{xn}$ to vn
- ("An environment" is actually the environment where the function was defined, and includes $\mathbf{x 0}$ for recursion)


## Tuples and lists

So far: numbers, booleans, conditionals, variables, functions

- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:

- Tuples: fixed "number of pieces" that may have different types Then:
- Lists: any "number of pieces" that all have the same type Later:
- Other more general ways to create compound data


## Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

1. Syntax: (e1 e e2)
2. Type-checking: If e1 has type ta and e2 has type tb, then the pair expression has type ta * tb

- A new kind of type

3. Evaluation: Evaluate e 1 to v 1 and e 2 to v 2 ; result is ( $\mathrm{v} 1, \mathrm{v} 2$ ) - A pair of values is a value

## Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

## Access:

1. Syntax: \#1 e and \#2 e
2. Type-checking: If e has type ta * tb, then \#1 e has type ta and \#2 e has type tb
3. Evaluation: Evaluate $\mathbf{e}$ to a pair of values and return first or second piece

- Example: If $\mathbf{e}$ is a variable $\mathbf{x}$, then look up $\mathbf{x}$ in environment


## Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

1. Syntax: \#1 e and \#2 e
2. Type-checking: and \#2 e has

## Will this work?!

has type ta
3. Evaluation: Evaluate e to a pair of values and return first or second piece

- Example: If $\boldsymbol{e}$ is a variable $\mathbf{x}$, then look up $\mathbf{x}$ in environment


## Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs
- (e1,e2,...,en)
- ta * tb * ... * tn
- \#1 e, \#2 e, \#3 e, ..

Homework 1 uses triples of type int*int*int a lot

## Examples

Functions can take and return pairs

```
fun swap (pr : int*bool) =
    (#2 pr, #1 pr)
fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
    (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x:int, y : int) =
    (x div y, x mod y)
fun sort_pair (pr : int*int) =
    if (#1 pr) < (#2 pr)
    then pr
    else (#2 pr, #1 pr)
```


## Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
    (* (int*int)*((int*int)*(int*int)) *)
```


## Nesting

Should this be true?<br>$(1,(2,3))=((1,2), 3)$

## Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list

- Can have any number of elements
- But all list elements have the same type

Need ways to build lists and access the pieces...

## Building Lists

- The empty list is a value:


## []

- In general, a list of values is a value; elements separated by commas:
[v1,v2,...,vn]
- If $\mathbf{e} 1$ evaluates to v and e 2 evaluates to a list [ $\mathrm{v} 1, \ldots, \mathrm{vn}$ ], then $\mathrm{e} 1:: \mathrm{e} 2$ evaluates to $[\mathrm{v}, \ldots, \mathrm{vn}$ ]


## Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- null e evaluates to true if and only if e evaluates to []
- If e evaluates to [v1,v2,...vn] then hd e evaluates to v 1 - (raise exception if e evaluates to [])
- If $e$ evaluates to [ $v 1, v 2, \ldots, v n$ ] then $t 1 e$ evaluates to [v2,..., vn]
- (raise exception if e evaluates to [])
- Notice result is a list


## Type-checking list operations

Lots of new types: For any type $t$, the type $t$ list describes lists where all elements have type $t$

- Examples: int list bool list int list list (int * int) list (int list * int) list
- So [] can have type $t$ list list for any type
- SML uses type 'a list to indicate this ("tick a" or "alpha")
- For e1::e2 to type-check, we need at such that e1 has type $t$ and $\mathbf{e} 2$ has type $t$ list. Then the result type is $t$ list
- null : 'a list -> bool
- hd : 'a list -> 'a
- tl : 'a list -> 'a list


## Recursion again

Functions over lists are usually recursive

- Only way to "get to all the elements"
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
- Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive

- You create a list out of smaller lists


## Example list functions

```
fun sum_list (xs : int list) =
    if null xs
    then 0
    else hd(xs) + sum_list(tl(xs))
fun countdown (x : int) =
    if }x=
    then []
    else x :: countdown (x-1)
fun append (xs : int list, ys : int list) =
    if null xs
    then ys
    else hd (xs) :: append (tl(xs), ys)
```


## Lists of pairs

Processing lists of pairs requires no new features. Examples:

```
fun sum pair list (xs : (int*int) list) =
    if null xs
    then 0
    else #1(hd xs) + #2(hd xs) + sum pair list(tl xs)
fun firsts (xs : (int*int) list) =
    if null xs
    then []
    else #1(hd xs) :: firsts(tl xs)
fun seconds (xs : (int*int) list) =
    if null xs
    then []
    else #2(hd xs) :: seconds(tl xs)
fun sum pair list2 (xs : (int*int) list) =
    (sum_list (firsts xs)) + (sum_list (seconds xs))
```

