CSE 341 : Programming Languages

Lecture 6
Fancy Patterns, Exceptions, Tail Recursion

Zach Tatlock
 Spring 2014

Nested patterns

- We can nest patterns as deep as we want
- Just like we can nest expressions as deep as we want
- Often avoids hard-to-read, wordy nested case expressions
- So the full meaning of pattern-matching is to compare a pattern against a value for the "same shape" and bind variables to the "right parts"
- More precise recursive definition coming after examples

Useful example: zip/unzip 3 lists

```
fun zip3 lists =
    case lists of
        ([],[],[]) => []
    | (hd1::tl1,hd2::tl2,hd3::tl3) =>
        (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
| _ => raise ListLengthMismatch
fun unzip3 triples =
    case triples of
    [] => ([],[],[])
    | (a,b,c)::tl =>
        let val (l1, l2, l3) = unzip3 tl
        in
        (a::l1,b::12,c::13)
        end
```

More examples to come (see code files)

Style

- Nested patterns can lead to very elegant, concise code
- Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
- Example: unzip3 and nondecreasing
- A common idiom is matching against a tuple of datatypes to compare them
- Examples: zip3 and multsign
- Wildcards are good style: use them instead of variables when you do not need the data
- Examples: len and multsign

(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v
- If p is _, the match succeeds and no bindings are introduced
- If p is $(p 1, \ldots, p n)$ and v is $(v 1, \ldots, v n)$, the match succeeds if and only if $p 1$ matches $v 1, \ldots, p n$ matches $v n$. The bindings are the union of all bindings from the submatches
- If p is $C p 1$, the match succeeds if v is C v1 (i.e., the same constructor) and $p 1$ matches $v 1$. The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

Examples

- Pattern a: :b: :c: d matches all lists with >= 3 elements
- Pattern a::b::c: [] matches all lists with 3 elements
- Pattern ($(a, b),(c, d)):$:e matches all non-empty lists of pairs of pairs

Exceptions

An exception binding introduces a new kind of exception

```
exception MyFirstException
exception MySecondException of int * int
```

The raise primitive raises (a.k.a. throws) an exception

```
raise MyFirstException
raise (MySecondException(7,9))
```

A handle expression can handle (a.k.a. catch) an exception

- If doesn't match, exception continues to propagate
e1 handle MyFirstException $=>$ e2
e1 handle MySecondException (x,y) => e2

Actually...

Exceptions are a lot like datatype constructors...

- Declaring an exception adds a constructor for type exn
- Can pass values of exn anywhere (e.g., function arguments)
- Not too common to do this but can be useful
- handle can have multiple branches with patterns for type exn

Recursion

Should now be comfortable with recursion:

- No harder than using a loop (whatever that is $)$)
- Often much easier than a loop
- When processing a tree (e.g., evaluate an arithmetic expression)
- Examples like appending lists
- Avoids mutation even for local variables
- Now:
- How to reason about efficiency of recursion
- The importance of tail recursion
- Using an accumulator to achieve tail recursion
- [No new language features here]

Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

- Calling a function f pushes an instance of f on the stack
- When a call to $£$ finishes, it is popped from the stack

These stack-frames store information like the value of local variables and "what is left to do" in the function

Due to recursion, multiple stack-frames may be calls to the same function

Example

$$
\begin{aligned}
& \text { fun fact } n=\text { if } n=0 \text { then } 1 \text { else } n * f a c t(n-1) \\
& \text { val } x=\text { fact } 3
\end{aligned}
$$

fact 3	fact 3: 3*	fact 3: 3*	fact 3: 3*
	fact 2	fact 2: 2*	fact 2: 2*
		fact 1	fact 1: 1*
			fact 0

fact $3: 3 *$	fact $3: 3 *$	fact $3: 3 *$	fact 3:3*2
fact $2: 2 *$	fact $2: 2 *$	fact $2: 2 * 1$	
fact $1: 1 *$	fact $1: 1 * 1$		
fact $0: 1$			

Example Revised

```
fun fact n =
    let fun aux(n,acc) =
        if n=0
        then acc
        else aux(n-1,acc*n)
    in
        aux (n,1)
    end
val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)

The call-stacks

fact 3	fact 3:	fact 3:
	fact 3:	
	$\operatorname{aux}(3,1)$	$\operatorname{aux}(3,1):$
		$\operatorname{aux}(3,1):$
	$\operatorname{aux}(2,3)$	$\operatorname{aux}(2,3):$
	$\operatorname{aux}(1,6)$	

fact 3:	fact 3:	fact 3:	fact 3:
$\operatorname{aux}(3,1):$	$\operatorname{aux}(3,1):$	$\operatorname{aux}(3,1):$	$\operatorname{aux}(3,1):$
$\operatorname{aux}(2,3):$	$\operatorname{aux}(2,3):$	$\operatorname{aux}(2,3):$	$\operatorname{aux}(2,3): 6$
$\operatorname{aux}(1,6):$	$\operatorname{aux}(1,6):$	$\operatorname{aux}(1,6): 6$	
$\operatorname{aux}(0,6)$	$\operatorname{aux}(0,6): 6$		Etc...

An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee's result and return it without any further evaluation

ML recognizes these tail calls in the compiler and treats them differently:

- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization

What really happens

```
fun fact n =
    let fun aux(n,acc) =
        if n=0
        then acc
        else aux(n-1,acc*n)
    in
        aux (n,1)
    end
val x = fact 3
```

fact 3 aux $(3,1) \operatorname{aux}(2,3) \operatorname{aux}(1,6) \operatorname{aux}(0,6)$

Moral of tail recursion

- Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
- Tail-recursive: recursive calls are tail-calls
- There is a methodology that can often guide this transformation:
- Create a helper function that takes an accumulator
- Old base case becomes initial accumulator
- New base case becomes final accumulator

Methodology already seen

```
fun fact n =
    let fun aux(n,acc) =
        if n=0
        then acc
        else aux(n-1,acc*n)
    in
        aux (n,1)
    end
val x = fact 3
```

fact 3 aux $(3,1) \operatorname{aux}(2,3) \operatorname{aux}(1,6) \operatorname{aux}(0,6)$

Another example

```
fun sum xs \(=\)
    case xs of
        [] \(=>0\)
    | \(\mathrm{x}:: \mathrm{xs}^{\prime}=>\mathrm{x}+\mathrm{sum} \mathrm{xs}^{\prime}\)
fun sum \(\mathrm{xs}=\)
    let fun aux(xs,acc) =
        case xs of
                        [] => acc
            | x:: \(\mathrm{xs}^{\prime}=>\) aux( \(\mathrm{xs}^{\prime}, \mathrm{x}+\mathrm{acc}\) )
    in
        aux (xs,0)
    end
```


And another

```
fun rev xs =
    case xs of
        [] => []
    | x::xs' => (rev xs') @ [x]
fun rev xs =
    let fun aux(xs,acc) =
        case xs of
                        [] => acc
            | x::xs' => aux(xs',x::acc)
    in
        aux(xs,[])
    end
```


Actually much better

```
fun rev xs =
    case xs of
        [] => []
    | x::xs' => (rev xs') @ [x]
```

- For fact and sum, tail-recursion is faster but both ways linear time
- Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
- And 1+2+...+(length-1) is almost length*length/2
- Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better

Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go

- You could get one recursive call to be a tail call, but rarely worth the complication

Also beware the wrath of premature optimization

- Favor clear, concise code
- But do use less space if inputs may be large

What is a tail-call?

The "nothing left for caller to do" intuition usually suffices

- If the result of \mathbf{x} is the "immediate result" for the enclosing function body, then \mathbf{f} is a tail call

But we can define "tail position" recursively

- Then a "tail call" is a function call in "tail position"

Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are
- In fun $f p=e$, the body e is in tail position
- If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but e1 is not). (Similar for case-expressions)
- If let b1 ... bn in e end is in tail position, then e is in tail position (but no binding expressions are)
- Function-call arguments e1 e2 are not in tail position
- ...

