
Today’s Agenda

•  ML Development Workflow
–  Emacs
–  Using use
–  The REPL

•  More ML
–  Shadowing Variables
–  Debugging Tips
–  Boolean Operations
–  Comparison Operations

1

Emacs

•  Recommended (not required) editor for this course

•  Powerful, but the learning curve can at first be intimidating

•  Helpful resources

–  CSE 341 Emacs Guide
–  Emacs Cheat Sheet
–  Emacs Reference Card
–  UW’s (OLD?) Emacs Tutorial
–  Google it!
–  Course staff, or ask around in the labs

2

Quick Emacs Demo

3

Image credit: http://earlcolour.deviantart.com/art/emacs-user-at-work-195326745

Using use

•  Enters bindings from the file foo.sml
–  Like typing the variable bindings one at a time in sequential

order into the REPL (more on this in a moment)

•  Result is () bound to variable it
–  Ignorable

4

use "foo.sml";

The REPL

•  Read-Eval-Print-Loop is well named

•  Conveniently run programs
–  Useful to quickly try something out
–  Save code for reuse by moving it into a persistent .sml file

•  Expects semicolons

•  For reasons discussed later, it’s dangerous to reuse use without
restarting the REPL session

5

Shadowing of Variable Bindings
val a = 1; (* a -> 1 *)
val b = a; (* a -> 1, b -> 1 *)
val a = 2; (* a -> 2, b -> 1 *)

6

1.  Expressions in variable bindings are evaluated “eagerly”
–  Before the variable binding “finishes”
–  Afterwards, the expression producing the value is irrelevant

2.  Multiple variable bindings to the same variable name, or

“shadowing”, is allowed
–  When looking up a variable, ML uses the latest binding by that

name in the current environment

3.  Remember, there is no way to “assign to” a variable in ML
–  Can only shadow it in a later environment
–  After binding, a variable’s value is an immutable constant

Try to Avoid Shadowing

7

•  Shadowing can be confusing and is often poor style

•  Why? Reintroducing variable bindings in the same REPL session
may..
–  make it seem like wrong code is correct; or
–  make it seem like correct code is wrong.

val x = "Hello World";
val x = 2; (* is this a type error? *)
val res = x * 2; (* is this 4 or a type error? *)

Using a Shadowed Variable

•  Is it ever possible to use a shadowed variable? Yes! And no…
•  It can be possible to uncover a shadowed variable when the

latest binding goes out of scope

8

val x = "Hello World";
fun add1(x : int) = x + 1; (* shadow x in func body *)
val y = add1 2;
val z = x^"!!"; (* "Hello World!!" *)

Use use Wisely

•  Warning: Variable shadowing makes it dangerous to call use
more than once without restarting the REPL session.

•  It may be fine to repeatedly call use in the same REPL

session, but unless you know what you’re doing, be safe!
–  Ex: loading multiple distinct files (with independent variable

bindings) at the beginning of a session
–  use’s behavior is well-defined, but even expert

programmers can get confused

•  Restart your REPL session before repeated calls to use

9

Debugging Errors

Your mistake could be:

•  Syntax: What you wrote means nothing or not the construct you

intended

•  Type-checking: What you wrote does not type-check

•  Evaluation: It runs but produces wrong answer, or an exception,
or an infinite loop

Keep these straight when debugging even if sometimes one kind of
mistake appears to be another

10

Play around

Best way to learn something: Try lots of things and don’t be afraid
of errors

Work on developing resilience to mistakes

–  Slow down
–  Don’t panic
–  Read what you wrote very carefully

Maybe watching me make a few mistakes will help…

11

Boolean Operations

•  not is just a pre-defined function, but andalso and orelse must
be built-in operations since they cannot be implemented as a
function in ML.
–  Why? Because andalso and orelse “short-circuit” their

evaluation and may not evaluate both e1 and e2.

•  Be careful to always use andalso instead of and.
•  and is completely different. We will get back to it later.

12

Operation Syntax Type-checking Evaluation

andalso e1 andalso e2 e1 and e2 must have type
bool

Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 must have type
bool

Same as Java’s
e1 || e2

not not e1 e1 must have type bool Same as Java’s
!e1

Style with Booleans

Language does not need andalso , orelse , or not

Using more concise forms generally much better style

And definitely please do not do this:

13

(* e1 andalso e2 *)
if e1
then e2
else false

(* e1 orelse e2 *)
if e1
then true
else e2

(* just say e (!!!) *)
if e
then true
else false

(* not e1 *)
if e1
then false
else true

Comparisons

For comparing int values:
= <> > < >= <=

You might see weird error messages because comparators can be
used with some other types too:

•  > < >= <= can be used with real, but not 1 int and 1 real

•  = <> can be used with any “equality type” but not with real
–  Let’s not discuss equality types yet

14

