
Today’s Agenda 

•  ML Development Workflow 
–  Emacs 
–  Using use 
–  The REPL 

•  More ML 
–  Shadowing Variables 
–  Debugging Tips 
–  Boolean Operations 
–  Comparison Operations 
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Emacs 

•  Recommended (not required) editor for this course 

•  Powerful, but the learning curve can at first be intimidating 
 
•  Helpful resources 

–  CSE 341 Emacs Guide 
–  Emacs Cheat Sheet 
–  Emacs Reference Card 
–  UW’s (OLD?) Emacs Tutorial 
–  Google it! 
–  Course staff, or ask around in the labs 
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Quick Emacs Demo 
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Image credit: http://earlcolour.deviantart.com/art/emacs-user-at-work-195326745 

Using use 

•  Enters bindings from the file foo.sml 
–  Like typing the variable bindings one at a time in sequential 

order into the REPL (more on this in a moment) 

•  Result is () bound to variable it 
–  Ignorable 
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use "foo.sml"; 



The REPL 

•  Read-Eval-Print-Loop is well named 

•  Conveniently run programs 
–  Useful to quickly try something out 
–  Save code for reuse by moving it into a persistent .sml file 

•  Expects semicolons 

•  For reasons discussed later, it’s dangerous to reuse use without 
restarting the REPL session 
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Shadowing of Variable Bindings 
val a = 1; (* a -> 1 *) 
val b = a; (* a -> 1, b -> 1 *) 
val a = 2; (* a -> 2, b -> 1 *) 
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1.  Expressions in variable bindings are evaluated “eagerly” 
–  Before the variable binding “finishes” 
–  Afterwards, the expression producing the value is irrelevant 

 
2.  Multiple variable bindings to the same variable name, or 

“shadowing”, is allowed 
–  When looking up a variable, ML uses the latest binding by that 

name in the current environment 

3.  Remember, there is no way to “assign to” a variable in ML 
–  Can only shadow it in a later environment 
–  After binding, a variable’s value is an immutable constant 

Try to Avoid Shadowing 
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•  Shadowing can be confusing and is often poor style 

•  Why? Reintroducing variable bindings in the same REPL session 
may.. 
–  make it seem like wrong code is correct; or 
–  make it seem like correct code is wrong. 

val x = "Hello World"; 
val x = 2;        (* is this a type error? *) 
val res = x * 2;  (* is this 4 or a type error? *) 

Using a Shadowed Variable 

•  Is it ever possible to use a shadowed variable? Yes! And no… 
•  It can be possible to uncover a shadowed variable when the 

latest binding goes out of scope 
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val x = "Hello World"; 
fun add1(x : int) = x + 1; (* shadow x in func body *) 
val y = add1 2; 
val z = x^"!!"; (* "Hello World!!" *) 



Use use Wisely 

•  Warning: Variable shadowing makes it dangerous to call use 
more than once without restarting the REPL session. 

 
•  It may be fine to repeatedly call use in the same REPL 

session, but unless you know what you’re doing, be safe! 
–  Ex: loading multiple distinct files (with independent variable 

bindings) at the beginning of a session 
–  use’s behavior is well-defined, but even expert 

programmers can get confused 

•  Restart your REPL session before repeated calls to use 
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Debugging Errors 

Your mistake could be: 
 
•  Syntax: What you wrote means nothing or not the construct you 

intended 

•  Type-checking: What you wrote does not type-check 

•  Evaluation: It runs but produces wrong answer, or an exception, 
or an infinite loop 

Keep these straight when debugging even if sometimes one kind of 
mistake appears to be another 
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Play around 

Best way to learn something: Try lots of things and don’t be afraid 
of errors 
 
Work on developing resilience to mistakes 

–  Slow down 
–  Don’t panic 
–  Read what you wrote very carefully 

 
Maybe watching me make a few mistakes will help… 
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Boolean Operations 

•  not is just a pre-defined function, but andalso and orelse must 
be built-in operations since they cannot be implemented as a 
function in ML. 
–  Why? Because andalso and orelse “short-circuit” their 

evaluation and may not evaluate both e1 and e2. 

•  Be careful to always use andalso instead of and. 
•  and is completely different. We will get back to it later. 
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Operation Syntax Type-checking Evaluation 

andalso e1 andalso e2 e1 and e2 must have type 
bool 

Same as Java’s 
e1 && e2 

orelse e1 orelse e2 e1 and e2 must have type 
bool 

Same as Java’s 
e1 || e2 

not not e1 e1 must have type bool Same as Java’s 
!e1 



Style with Booleans 

Language does not need  andalso , orelse , or not 

Using more concise forms generally much better style 
 

And definitely please do not do this: 
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(* e1 andalso e2 *) 
if e1 
then e2 
else false 

(* e1 orelse e2 *) 
if e1 
then true 
else e2 

(* just say e (!!!) *) 
if e 
then true 
else false 

(* not e1 *) 
if e1 
then false 
else true 

Comparisons 

For comparing int values:   
=  <>  >  <  >=  <= 

 
You might see weird error messages because comparators can be 
used with some other types too: 

•  > < >= <= can be used with real, but not 1 int and 1 real 

•  =  <> can be used with any “equality type” but not with real 
–  Let’s not discuss equality types yet 
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