
Yet Another Haskell Tutorial

Hal Daumé III

Copyright (c) Hal Daume III, 2002-2006. The preprint version of this tutorial is
intended to be free to the entire Haskell community, so we grant permission to copy
and distribute it for any purpose, provided that it is reproduced in its entirety, in-
cluding this notice. Modified versions may not be distributed without prior concent
of the author, and must still maintain a copy of this notice. The author retains the
right to change or modify this copyright at any time, as well as to make the book no
longer free of charge.

About This Report

The goal of the Yet Another Haskell Tutorial is to provide a complete intoduction to
the Haskell programming language. It assumes no knowledge of the Haskell language
or familiarity with functional programming in general. However, general familiarity
with programming concepts (such as algorithms) will be helpful. This is not intended
to be an introduction to programming in general; rather, to programming in Haskell.
Sufficient familiarity with your operating system and a text editor is also necessary
(this report only discusses installation on configuration on Windows and *Nix system;
other operating systems may be supported – consult the documentation of your chosen
compiler for more information on installing on other platforms).

What is Haskell?

Haskell is called a lazy, pure functional programming language. It is called lazy be-
cause expressions which are not needed to determine the answer to a problem are not
evaluated. The opposize of lazy is strict, which is the evaluation strategry of most
common programming languages (C, C++, Java, even ML). A strict language is one in
which every expression is evaluated, whether the result of its computation is important
or not. (This is probably not entirely true as optimizing compilers for strict languages
often do what’s called “dead code elmination” – this removes unused expressions from
the program.) It is called pure because it does not allow side effects (A side effect
is something that affects the “state” of the world. For instance, a function that prints
something to the screen is said to be side-effecting, as is a function which affects the
value of a global variable.) – of course, a programming language without side effects
would be horribly useless; Haskell uses a system of monads to isolate all impure com-
putations from the rest of the program and perform them in the safe way (see Chapter 9
for a discussion of monads proper or Chapter 5 for how to do input/output in a pure
language).

Haskell is called a functional language because the evaluation of a program is
equivalent to evaluating a function in the pure mathematical sense. This also differs
from standard languages (like C and Java) which evaluate a sequence of statements,
one after the other (this is termed an imperative langauge).

i

ii

The History of Haskell

The history of Haskell is best described using the words of the authors. The following
text is quoted from the published version of the Haskell 98 Report:

In September of 1987 a meeting was held at the conference on Functional
Programming Languages and Computer Architecture (FPCA ’87) in Port-
land, Oregon, to discuss an unfortunate situation in the functional pro-
gramming community: there had come into being more than a dozen non-
strict, purely functional programming languages, all similar in expressive
power and semantic underpinnings. There was a strong consensus at this
meeting that more widespread use of this class of functional languages was
being hampered by the lack of a common language. It was decided that a
committee should be formed to design such a language, providing faster
communication of new ideas, a stable foundation for real applications de-
velopment, and a vehicle through which others would be encouraged to
use functional languages. This document describes the result of that com-
mittee’s efforts: a purely functional programming language called Haskell,
named after the logician Haskell B. Curry whose work provides the logical
basis for much of ours.

The committee’s primary goal was to design a language that satisfied these
constraints:

1. It should be suitable for teaching, research, and applications, includ-
ing building large systems.

2. It should be completely described via the publication of a formal
syntax and semantics.

3. It should be freely available. Anyone should be permitted to imple-
ment the language and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming
languages.

The committee intended that Haskell would serve as a basis for future
research in language design, and hoped that extensions or variants of the
language would appear, incorporating experimental features.

Haskell has indeed evolved continuously since its original publication. By
the middle of 1997, there had been four iterations of the language design
(the latest at that point being Haskell 1.4). At the 1997 Haskell Workshop
in Amsterdam, it was decided that a stable variant of Haskell was needed;
this stable language is the subject of this Report, and is called “Haskell
98”.

Haskell 98 was conceived as a relatively minor tidy-up of Haskell 1.4,
making some simplifications, and removing some pitfalls for the unwary.

iii

It is intended to be a “stable” language in sense the implementors are com-
mitted to supporting Haskell 98 exactly as specified, for the foreseeable
future.

The original Haskell Report covered only the language, together with a
standard library called the Prelude. By the time Haskell 98 was stabilised,
it had become clear that many programs need access to a larger set of li-
brary functions (notably concerning input/output and simple interaction
with the operating system). If these program were to be portable, a set of
libraries would have to be standardised too. A separate effort was there-
fore begun by a distinct (but overlapping) committee to fix the Haskell 98
Libraries.

Why Use Haskell?

Clearly you’re interested in Haskell since you’re reading this tutorial. There are many
motivations for using Haskell. My personal reason for using Haskell is that I have
found that I write more bug-free code in less time using Haskell than any other lan-
guage. I also find it very readable and extensible.

Perhaps most importantly, however, I have consistently found the Haskell commu-
nity to be incredibly helpful. The language is constantly evolving (that’s not to say
it’s instable; rather that there are numerous extensions that have been added to some
compilers which I find very useful) and user suggestions are often heeded when new
extensions are to be implemented.

Why Not Use Haskell?

My two biggest complaints, and the complaints of most Haskellers I know, are: (1) the
generated code tends to be slower than equivalent programs written in a language like
C; and (2) it tends to be difficult to debug.

The second problem tends not be to a very big issue: most of the code I’ve written
is not buggy, as most of the common sources of bugs in other languages simply don’t
exist in Haskell. The first issue certainly has come up a few times in my experience;
however, CPU time is almost always cheaper than programmer time and if I have to
wait a little longer for my results after having saved a few days programming and
debugging.

Of course, this isn’t the case of all applications. Some people may find that the
speed hit taken for using Haskell is unbearable. However, Haskell has a standardized
foreign-function interface which allow you to link in code written in other languages,
for when you need to get the most speed out of your code. If you don’t find this
sufficient, I would suggest taking a look at the language O’Caml, which often out-
performs even C++, yet also has many of the benefits of Haskell.

iv

Target Audience

There have been many books and tutorials written about Haskell; for a (nearly) com-
plete list, visit the http://haskell.org/bookshelf (Haskell Bookshelf) at the
Haskell homepage. A brief survey of the tutorials available yields:

• A Gentle Introduction to Haskell is an introduction to Haskell, given that the
reader is familiar with functional programming en large.

• Haskell Companion is a short reference of common concepts and definitions.

• Online Haskell Course is a short course (in German) for beginning with Haskell.

• Two Dozen Short Lessons in Haskell is the draft of an excellent textbook that
emphasizes user involvement.

• Haskell Tutorial is based on a course given at the 3rd International Summer
School on Advanced Functional Programming.

• Haskell for Miranda Programmers assumes knowledge of the language Miranda.

• PLEAC-Haskell is a tutorial in the style of the Perl Cookbook.

Though all of these tutorials is excellent, they are on their own incomplete: The
“Gentle Introduction” is far too advanced for beginning Haskellers and the others tend
to end too early, or not cover everything. Haskell is full of pitfalls for new programmers
and experienced non-functional programmers alike, as can be witnessed by reading
through the archives of the Haskell mailing list.

It became clear that there is a strong need for a tutorial which is introductory in the
sense that it does not assume knowledge of functional programming, but which is ad-
vanced in the sense that it does assume some background in programming. Moreover,
none of the known tutorials introduce input/output and iteractivity soon enough (Paul
Hudak’s book is an exception in that it does introduce IO by page 35, though the focus
and aim of that book and this tutorial are very different). This tutorial is not for begin-
ning programmers; some experience and knowledge of programming and computers is
assumed (though the appendix does contain some background information).

The Haskell language underwent a standardization process and the result is called
Haskell 98. The majority of this book will cover the Haskell 98 standard. Any de-
viations from the standard will be noted (for instance, many compilers offer certain
extensions to the standard which are useful; some of these may be discussed).

The goals of this tutorial are:

• to be practical above all else

• to provide a comprehensive, free introduction to the Haskell language

• to point out common pitfalls and their solutions

• to provide a good sense of how Haskell can be used in the real world

v

Additional Online Sources of Information

A Short Introduction to Haskell :
http://haskell.org/aboutHaskell.html

Haskell Wiki :
http://haskell.org/hawiki/

Haskell-Tutorial :
ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.
pdf

Tour of the Haskell Prelude :
http://www.cs.uu.nl/˜afie/haskell/tourofprelude.html

Courses in Haskell :
http://haskell.org/classes/

Acknowledgements

It would be inappropriate not to give credit also to the original designers of Haskell.
Those are: Arvind, Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton,
Jon Fairbairn, Joseph Fasel, Andy Gordon, Maria Guzman, Kevin Hammond, Ralf
Hinze, Paul Hudak, John Hughes, Thomas Johnsson, Mark Jones, Dick Kieburtz, John
Launchbury, Erik Meijer, Rishiyur Nikhil, John Peterson, Simon Peyton Jones, Mike
Reeve, Alastair Reid, Colin Runciman, Philip Wadler, David Wise, Jonathan Young.

Finally, I would like to specifically thank Simon Peyton Jones, Simon Marlow,
John Hughes, Alastair Reid, Koen Classen, Manuel Chakravarty, Sigbjorn Finne and
Sven Panne, all of whom have made my life learning Haskell all the more enjoyable by
always being supportive. There were doubtless others who helped and are not listed,
but these are those who come to mind.

Also thanks to the many people who have reported “bugs” in the first edition.
- Hal Daumé III

vi

Contents

1 Introduction 3

2 Getting Started 5
2.1 Hugs . 5

2.1.1 Where to get it . 6
2.1.2 Installation procedures . 6
2.1.3 How to run it . 6
2.1.4 Program options . 7
2.1.5 How to get help . 7

2.2 Glasgow Haskell Compiler . 7
2.2.1 Where to get it . 7
2.2.2 Installation procedures . 8
2.2.3 How to run the compiler . 8
2.2.4 How to run the interpreter 8
2.2.5 Program options . 9
2.2.6 How to get help . 9

2.3 NHC . 9
2.3.1 Where to get it . 9
2.3.2 Installation procedures . 9
2.3.3 How to run it . 9
2.3.4 Program options . 9
2.3.5 How to get help . 9

2.4 Editors . 9

3 Language Basics 11
3.1 Arithmetic . 13
3.2 Pairs, Triples and More . 14
3.3 Lists . 15

3.3.1 Strings . 17
3.3.2 Simple List Functions . 18

3.4 Source Code Files . 20
3.5 Functions . 22

3.5.1 Let Bindings . 27
3.5.2 Infix . 28

vii

viii CONTENTS

3.6 Comments . 28
3.7 Recursion . 29
3.8 Interactivity . 31

4 Type Basics 37
4.1 Simple Types . 37
4.2 Polymorphic Types . 39
4.3 Type Classes . 40

4.3.1 Motivation . 40
4.3.2 Equality Testing . 41
4.3.3 The Num Class . 41
4.3.4 The Show Class . 41

4.4 Function Types . 42
4.4.1 Lambda Calculus . 42
4.4.2 Higher-Order Types . 42
4.4.3 That Pesky IO Type . 44
4.4.4 Explicit Type Declarations 45
4.4.5 Functional Arguments . 46

4.5 Data Types . 47
4.5.1 Pairs . 47
4.5.2 Multiple Constructors . 49
4.5.3 Recursive Datatypes . 51
4.5.4 Binary Trees . 51
4.5.5 Enumerated Sets . 52
4.5.6 The Unit type . 53

4.6 Continuation Passing Style . 53

5 Basic Input/Output 57
5.1 The RealWorld Solution . 57
5.2 Actions . 58
5.3 The IO Library . 62
5.4 A File Reading Program . 64

6 Modules 67
6.1 Exports . 67
6.2 Imports . 69
6.3 Hierarchical Imports . 70
6.4 Literate Versus Non-Literate . 71

6.4.1 Bird-scripts . 71
6.4.2 LaTeX-scripts . 72

7 Advanced Features 73
7.1 Sections and Infix Operators . 73
7.2 Local Declarations . 74
7.3 Partial Application . 76
7.4 Pattern Matching . 80

CONTENTS ix

7.5 Guards . 83
7.6 Instance Declarations . 85

7.6.1 The Eq Class . 85
7.6.2 The Show Class . 86
7.6.3 Other Important Classes . 87
7.6.4 Class Contexts . 89
7.6.5 Deriving Classes . 89

7.7 Datatypes Revisited . 90
7.7.1 Named Fields . 90

7.8 More Lists . 92
7.8.1 Standard List Functions . 92
7.8.2 List Comprehensions . 94

7.9 Arrays . 96
7.10 Finite Maps . 97
7.11 Layout . 99
7.12 The Final Word on Lists . 99

8 Advanced Types 103
8.1 Type Synonyms . 103
8.2 Newtypes . 104
8.3 Datatypes . 105

8.3.1 Strict Fields . 105
8.4 Classes . 108

8.4.1 Pong . 108
8.4.2 Computations . 109

8.5 Instances . 113
8.6 Kinds . 115
8.7 Class Hierarchies . 117
8.8 Default . 117

9 Monads 119
9.1 Do Notation . 120
9.2 Definition . 122
9.3 A Simple State Monad . 124
9.4 Common Monads . 130
9.5 Monadic Combinators . 134
9.6 MonadPlus . 137
9.7 Monad Transformers . 139
9.8 Parsing Monads . 144

9.8.1 A Simple Parsing Monad . 144
9.8.2 Parsec . 151

CONTENTS 1

10 Advanced Techniques 157
10.1 Exceptions . 157
10.2 Mutable Arrays . 157
10.3 Mutable References . 157
10.4 The ST Monad . 157
10.5 Concurrency . 157
10.6 Regular Expressions . 157
10.7 Dynamic Types . 157

A Brief Complexity Theory 159

B Recursion and Induction 161

C Solutions To Exercises 163

2 CONTENTS

Chapter 1

Introduction

This tutorial contains a whole host of example code, all of which should have been
included in its distribution. If not, please refer to the links off of the Haskell web site
(haskell.org) to get it. This book is formatted to make example code stand out
from the rest of the text.

Code will look like this.

Occasionally, we will refer to interaction betwen you and the operating system
and/or the interactive shell (more on this in Section 2).

Interaction will look like this.

Strewn throughout the tutorial, we will often make additional notes to something
written. These are often for making comparisons to other programming languages or
adding helpful information.

NOTE Notes will appear like this.

If we’re covering a difficult or confusing topic and there is something you should
watch out for, we will place a warning.

WARNING Warnings will appear like this.

Finally, we will sometimes make reference to built-in functions (so-called Prelude-
functions). This will look something like this:

map :: (a− > b)− > [a]− > [b]

Within the body text, Haskell keywords will appear like this: where, identifiers as
map, types as String and classes as Eq.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

There are three well known Haskell system: Hugs, GHC and NHC. Hugs is exclusively
an interpreter, meaning that you cannot compile stand-alone programs with it, but can
test and debug programs in an interactive environment. GHC is both an interpreter (like
Hugs) and a compiler which will produce stand-alone programs. NHC is exclusively a
compiler. Which you use is entirely up to you. I’ve tried to make a list of some of the
differences in the following list but of course this is far from exhaustive:

Hugs - very fast; implements almost all of Haskell 98 (the standard) and most exten-
sions; built-in support for module browsing; cannot create stand-alones; written
in C; works on almost every platform; build in graphics library.

GHC - interactive environment is slower than Hugs, but allows function definitions
in the environment (in Hugs you have to put them in a file); implements all of
Haskell 98 and extensions; good support for interfacing with other languages; in
a sense the “de facto” standard.

NHC - less used and no interactive environment, but produces smaller and often faster
executables than does GHC; supports Haskell 98 and some extensions.

I, personally, have all of them installed and use them for different purposes. I tend
to use GHC to compile (primarily because I’m most familiar with it) and the Hugs
interactive environment, since it is much faster. As such, this is what I would suggest.
However, that is a fair amount to download an install, so if you had to go with just one,
I’d get GHC, since it contains both a compiler and interactive environment.

Following is a descrition of how to download and install each of this as of the time
this tutorial was written. It may have changed – see http://haskell.org (the
Haskell website) for up-to-date information.

2.1 Hugs

Hugs supports almost all of the Haskell 98 standard (it lacks some of the libraries),
as well as a number of advanced/experimental extensions, including: multi-parameter

5

6 CHAPTER 2. GETTING STARTED

type classes, extensible records, rank-2 polymorphism, existentials, scoped type vari-
ables, and restricted type synonyms.

2.1.1 Where to get it

The official Hugs web page is at:
http://haskell.org/hugs (http://haskell.org/hugs)
If you go there, there is a link titled “downloading” which will send you to the

download page. From that page, you can download the appropriate version of Hugs for
your computer.

2.1.2 Installation procedures

Once you’ve downloaded Hugs, installation differs depending on your platform, how-
ever, installation for Hugs is more of less identical to installation for any program on
your platform.

For Windows when you click on the “msi” file to download, simply choose “Run This
Program” and the installation will begin automatically. From there, just follow
the on-screen instructions.

For RPMs use whatever RPM installation program you know best.

For source first gunzip the file, then untar it. Presumably if you’re using a system
which isn’t otherwise supported, you know enough about your system to be able
to run configure scripts and make things by hand.

2.1.3 How to run it

On Unix machines, the Hugs interpreter is usually started with a command line of the
form: hugs [option — file] ...

On Windows , Hugs may be started by selecting it from the start menu or by double
clicking on a file with the .hs or .lhs extension. (This manual assumes that Hugs has
already been successfully installed on your system.)

Hugs uses options to set system parameters. These options are distinguished by a
leading + or - and are used to customize the behaviour of the interpreter. When Hugs
starts, the interpreter performs the following tasks:

• Options in the environment are processed. The variable HUGSFLAGS holds
these options. On Windows 95/NT, the registry is also queried for Hugs option
settings.

• Command line options are processed.

• Internal data structures are initialized. In particular, the heap is initialized, and
its size is fixed at this point; if you want to run the interpreter with a heap size
other than the default, then this must be specified using options on the command
line, in the environment or in the registry.

2.2. GLASGOW HASKELL COMPILER 7

• The prelude file is loaded. The interpreter will look for the prelude file on the
path specified by the -P option. If the prelude, located in the file Prelude.hs,
cannot be found in one of the path directories or in the current directory, then
Hugs will terminate; Hugs will not run without the prelude file.

• Program files specified on the command line are loaded. The effect of a com-
mand hugs f1 ... fn is the same as starting up Hugs with the hugs command and
then typing :load f1 ... fn. In particular, the interpreter will not terminate if a
problem occurs while it is trying to load one of the specified files, but it will
abort the attempted load command.

The environment variables and command line options used by Hugs are described
in the following sections.

2.1.4 Program options

To list all of the options would take too much space. The most important option at this
point is “+98” or “-98”. When you start hugs with “+98” it is in Haskell 98 mode,
which turns off all extensions. When you start in “-98”, you are in Hugs mode and all
extensions are turned on. If you’ve downloaded someone elses code and you’re having
trouble loading it, first make sure you have the “98” flag set properly.

Further information on the Hugs options is in the manual:
http://cvs.haskell.org/Hugs/pages/hugsman/started.html ().

2.1.5 How to get help

To get Hugs specific help, go to the Hugs web page. To get general Haskell help, go to
the Haskell web page.

2.2 Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) is a robust, fully-featured, optimising compiler
and interactive environment for Haskell 98; GHC compiles Haskell to either native
code or C. It implements numerous experimental language extensions to Haskell 98;
for example: concurrency, a foreign language interface, multi-parameter type classes,
scoped type variables, existential and universal quantification, unboxed types, excep-
tions, weak pointers, and so on. GHC comes with a generational garbage collector, and
a space and time profiler.

2.2.1 Where to get it

Go to the official GHC web page http://haskell.org/ghc (GHC) to download
the latest release. The current version as of the writing of this tutorial is 5.04.2 and can
be downloaded off of the GHC download page (follow the “Download” link). From
that page, you can download the appropriate version of GHC for your computer.

8 CHAPTER 2. GETTING STARTED

2.2.2 Installation procedures

Once you’ve downloaded GHC, installation differs depending on your platform; how-
ever, installation for GHC is more of less identical to installation for any program on
your platform.

For Windows when you click on the “msi” file to download, simply choose “Run This
Program” and the installation will begin automatically. From there, just follow
the on-screen instructions.

For RPMs use whatever RPM installation program you know best.

For source first gunzip the file, then untar it. Presumably if you’re using a system
which isn’t otherwise supported, you know enough about your system to be able
to run configure scripts and make things by hand.

For a more detailed description of the installation procedure, look at the GHC users
manual under “Installing GHC”.

2.2.3 How to run the compiler

Running the compiler is fairly easy. Assuming that you have a program written with a
main function in a file called Main.hs, you can compile it simply by writing:

% ghc --make Main.hs -o main

The “–make” option tells GHC that this is a program and not just a library and you
want to build it and all modules it depends on. “Main.hs” stipulates the name of the
file to compile; and the “-o main” means that you want to put the output in a file called
“main”.

NOTE In Windows, you should say “-o main.exe” to tell Windows
that this is an executable file.

You can then run the program by simply typing “main” at the prompt.

2.2.4 How to run the interpreter

GHCi is invoked with the command “ghci” or “ghc –interactive”. One or more modules
or filenames can also be specified on the command line; this instructs GHCi to load the
specified modules or filenames (and all the modules they depend on), just as if you had
said :load modules at the GHCi prompt.

2.3. NHC 9

2.2.5 Program options

To list all of the options would take too much space. The most important option at
this point is “-fglasgow-exts”. When you start GHCi without “-fglasgow-exts” it is
in Haskell 98 mode, which turns off all extensions. When you start with “-fglasgow-
exts”, all extensions are turned on. If you’ve downloaded someone elses code and
you’re having trouble loading it, first make sure you have this flag set properly.

Further information on the GHC and GHCi options are in the manual off of the
GHC web page.

2.2.6 How to get help

To get GHC(i) specific help, go to the GHC web page. To get general Haskell help, go
to the Haskell web page.

2.3 NHC

About NHC. . .

2.3.1 Where to get it

2.3.2 Installation procedures

2.3.3 How to run it

2.3.4 Program options

2.3.5 How to get help

2.4 Editors

With good text editor, programming is fun. Of course, you can get along with simplistic
editor capable of just cut-n-paste, but good editor is capable of doing most of the chores
for you, letting you concentrate on what you are writing. With respect to programming
in Haskell, good text editor should have as much as possible of the following features:

• Syntax highlighting for source files

• Indentation of source files

• Interaction with Haskell interpreter (be it Hugs or GHCi)

• Computer-aided code navigation

• Code completion

10 CHAPTER 2. GETTING STARTED

At the time of writing, several options were available: Emacs/XEmacs support
Haskell via haskell-mode and accompanying Elist code (available from http://www.haskell.org/haskell-mode
()), and

What’s else available?. . .
(X)Emacs seem to do the best job, having all the features listed above. Indentation

is aware about Haskell’s 2-dimensional layout rules (see Section 7.11, very smart and
have to be seen in action to be believed. You can quickly jump to the definition of
chosen function with the help of ”Definitions” menu, and name of the currently edited
function is always displayed in the modeline.

Chapter 3

Language Basics

In this chapter we present the basic concepts of Haskell. In addition to familiarizing you
with the interactive environments and showing you how to compile a basic program,
we introduce the basic syntax of Haskell, which will probably be quite alien if you are
used to languages like C and Java.

However, before we talk about specifics of the language, we need to establish some
general properties of Haskell. Most importantly, Haskell is a lazy language, which lazy
means that no computation takes place unless it is forced to take place when the result
of that computation is used.

This means, for instance, that you can define infinitely large data structures, pro-
vided that you never use the entire structure. For instance, using imperative-esque
psuedo-code, we could create an infinite list containing the number 1 in each position
by doing something like:

List makeList()
{
List current = new List();
current.value = 1;
current.next = makeList();
return current;

}

By looking at this code, we can see what it’s trying to do: it creates a new list, sets
its value to 1 and then recursively calls itself to make the rest of the list. Of course, if
you actually wrote this code and called it, the program would never terminate, because
makeList would keep calling itself ad infinitum.

This is because we assume this imperative-esque language is strict, the opposite of strict
lazy. Strict languages are often referred to as “call by value,” while lazy languages are
referred to as “call by name.” In the above psuedo-code, when we “run” makeList
on the fifth line, we attempt to get a value out of it. This leads to an infinite loop.

The equivalent code in Haskell is:

11

12 CHAPTER 3. LANGUAGE BASICS

makeList = 1 : makeList

This program reads: we’re defining something called makeList (this is what goes
on the left-hand side of the equals sign). On the right-hand side, we give the definition
of makeList. In Haskell, the colon operator is used to create lists (we’ll talk more
about this soon). This right-hand side says that the value of makeList is the element
1 stuck on to the beginning of the value of makeList.

However, since Haskell is lazy (or “call by name”), we do not actually attempt to
evaluate what makeList is at this point: we simply remember that if ever in the future
we need the second element of makeList, we need to just look at makeList.

Now, if you attempt to write makeList to a file, print it to the screen, or calculate
the sum of its elements, the operation won’t terminate because it would have to evaluate
an infinitely long list. However, if you simply use a finite portion of the list (say the
first 10 elements), the fact that the list is infinitely long doesn’t matter. If you only use
the first 10 elements, only the first 10 elements are ever calculated. This is laziness.

Second, Haskell is case-sensitive. Many languages are, but Haskell actually usescase-sensitive
case to give meaning. Haskell distinguishes between values (for instance, numbers:values
1, 2, 3, . . .); strings: “abc”, “hello”, . . . ; characters: ‘a’, ‘b’, ‘ ’, . . . ; even functions:
for instance, the function squares a value, or the square-root function); and types (thetypes
categories to which values belong).

By itself, this is not unusual. Most languages have some system of types. What is
unusual is that Haskell requires that the names given to functions and values begin with
a lower-case letter and that the names given to types begin with an upper-case letter.
The moral is: if your otherwise correct program won’t compile, be sure you haven’t
named your function Foo, or something else beginning with a capital letter.

Being a functional language, Haskell eschews side effects. A side effect is essen-side effects
tially something that happens in the course of executing a function that is not related to
the output produced by that function.

For instance, in a language like C or Java, you are able to modify “global” variables
from within a function. This is a side effect because the modification of this global
variable is not related to the output produced by the function. Furthermore, modifying
the state of the real world is considered a side effect: printing something to the screen,
reading a file, etc., are all side effecting operations.

Functions that do not have side effects are called pure. An easy test for whether orpure
not a function is pure is to ask yourself a simple question: “Given the same arguments,
will this function always produce the same result?”.

All of this means that if you’re used to writing code in an imperative language (like
C or Java), you’re going to have to start thinking differently. Most importantly, if you
have a value x, you must not think of x as a register, a memory location or anything
else of that nature. x is simply a name, just as “Hal” is my name. You cannot arbitrarily
decide to store a different person in my name any more than you can arbitrarily decide
to store a different value in x. This means that code that might look like the following
C code is invalid (and has no counterpart) in Haskell:

int x = 5;

3.1. ARITHMETIC 13

x = x + 1;

A call like x = x + 1 is called destructive update because we are destroying destructive update
whatever was in x before and replacing it with a new value. Destructive update does
not exist in Haskell.

By not allowing destructive updates (or any other such side effecting operations),
Haskell code is very easy to comprehend. That is, when we define a function f, and
call that function with a particular argument a in the beginning of a program, and then,
at the end of the program, again call f with the same argument a, we know we will
get out the same result. This is because we know that a cannot have changed and
because we know that f only depends on a (for instance, it didn’t increment a global
counter). This property is called referential transparency and basically states that if referential transparency
two functions f and g produce the same values for the same arguments, then we may
replace f with g (and vice-versa).

NOTE There is no agreed-upon exact definition of referential trans-
parency. The definition given above is the one I like best. They all carry
the same interpretation; the differences lie in how they are formalized.

3.1 Arithmetic

Let’s begin our foray into Haskell with simple arithmetic. Start up your favorite inter-
active shell (Hugs or GHCi; see Chapter 2 for installation instructions). The shell will
output to the screen a few lines talking about itself and what it’s doing and then should
finish with the cursor on a line reading:

Prelude>

From here, you can begin to evaluate expressions. An expression is basically some- expressions
thing that has a value. For instance, the number 5 is an expression (its value is 5). Val-
ues can be built up from other values; for instance, 5 + 6 is an expression (its value is
11). In fact, most simple arithmetic operations are supported by Haskell, including plus
(+), minus (-), times (*), divided-by (/), exponentiation (ˆ) and square-root (sqrt).
You can experiment with these by asking the interactive shell to evaluate expressions
and to give you their value. In this way, a Haskell shell can be used as a powerful
calculator. Try some of the following:

Prelude> 5*4+3
23
Prelude> 5ˆ5-2
3123
Prelude> sqrt 2
1.4142135623730951

14 CHAPTER 3. LANGUAGE BASICS

Prelude> 5*(4+3)
35

We can see that, in addition to the standard arithmetic operations, Haskell also
allows grouping by parentheses, hence the difference between the values of 5*4+3 and
5*(4+3). The reason for this is that the “understood” grouping of the first expression is
(5*4)+3, due to operator precedence.operator precedence

Also note that parentheses aren’t required around function arguments. For instance,
we simply wrote sqrt 2, not sqrt(2), as would be required in most other lan-
guages. You could write it with the parentheses, but in Haskell, since function applica-
tion is so common, parentheses aren’t required.

WARNING Even though parentheses are not always needed, some-
times it is better to leave them in anyway; other people will probably
have to read your code, and if extra parentheses make the intent of the
code clearer, use them.

Now try entering 2ˆ5000. Does it work?

NOTE If you’re familiar with programming in other languages, you
may find it odd that sqrt 2 comes back with a decimal point (i.e., is a
floating point number) even though the argument to the function seems to
be an integer. This interchangability of numeric types is due to Haskell’s
system of type classes and will be discussed in detail in Section 4.3).

Exercises

Exercise 3.1 We’ve seen that multiplication binds more tightly than division. Can you
think of a way to determine whether function application binds more or less tightly
than multiplication?

3.2 Pairs, Triples and More

In addition to single values, we should also address multiple values. For instance, we
may want to refer to a position by its x/y coordinate, which would be a pair of integers.
To make a pair of integers is simple: you enclose the pair in parenthesis and separate
them with a comma. Try the following:

Prelude> (5,3)
(5,3)

3.3. LISTS 15

Here, we have a pair of integers, 5 and 3. In Haskell, the first element of a pair
need not have the same type as the second element: that is, pairs are allowed to be
heterogeneous. For instance, you can have a pair of an integer with a string. Thisheterogeneous
contrasts with lists, which must be made up of elements of all the same type (we will
discuss lists further in Section 3.3).

There are two predefined functions that allow you to extract the first and second
elements of a pair. They are, respectively, fst and snd. You can see how they work
below:

Prelude> fst (5, "hello")
5
Prelude> snd (5, "hello")
"hello"

In addition to pairs, you can define triples, quadruples etc. To define a triple and a
quadruple, respectively, we write:

Prelude> (1,2,3)
(1,2,3)
Prelude> (1,2,3,4)
(1,2,3,4)

And so on. In general, pairs, triples, and so on are called tuples and can store fixed tuples
amounts of heterogeneous data.

NOTE The functions fst and snd won’t work on anything longer
than a pair; if you try to use them on a larger tuple, you will get a message
stating that there was a type error. The meaning of this error message will
be explained in Chapter 4.

Exercises

Exercise 3.2 Use a combination of fst and snd to extract the character out of the tuple
((1,’a’),"foo").

3.3 Lists

The primary limitation of tuples is that they hold only a fixed number of elements:
pairs hold two, triples hold three, and so on. A data structure that can hold an arbitrary
number of elements is a list. Lists are assembled in a very similar fashion to tuples,
except that they use square brackets instead of parentheses. We can define a list like:

16 CHAPTER 3. LANGUAGE BASICS

Prelude> [1,2]
[1,2]
Prelude> [1,2,3]
[1,2,3]

Lists don’t need to have any elements. The empty list is simply [].
Unlike tuples, we can very easily add an element on to the beginning of the list

using the colon operator. The colon is called the “cons” operator; the process of addingcons operator
an element is called “consing.” The etymology of this is that we are constructing a
new list from an element and an old list. We can see the cons operator in action in the
following examples:

Prelude> 0:[1,2]
[0,1,2]
Prelude> 5:[1,2,3,4]
[5,1,2,3,4]

We can actually build any list by using the cons operator (the colon) and the empty
list:

Prelude> 5:1:2:3:4:[]
[5,1,2,3,4]

In fact, the [5,1,2,3,4] syntax is “syntactic sugar” for the expression using thesyntactic sugar
explicit cons operators and empty list. If we write something using the [5,1,2,3,4]
notation, the compiler simply translates it to the expression using (:) and [].

NOTE In general, “syntactic sugar” is a strictly unnecessary language
feature, which is added to make the syntax nicer.

One further difference between lists and tuples is that, while tuples are heteroge-
neous, lists must be homogenous. This means that you cannot have a list that holdshomogenous
both integers and strings. If you try to, a type error will be reported.

Of course, lists don’t have to just contain integers or strings; they can also contain
tuples or even other lists. Tuples, similarly, can contain lists and other tuples. Try some
of the following:

Prelude> [(1,1),(2,4),(3,9),(4,16)]
[(1,1),(2,4),(3,9),(4,16)]
Prelude> ([1,2,3,4],[5,6,7])
([1,2,3,4],[5,6,7])

3.3. LISTS 17

There are two basic list functions: head and tail. The head function returns
the first element of a (non-empty) list, and the tail function returns all but the first
element of a (non-empty) list.

To get the length of a list, you use the length function:

Prelude> length [1,2,3,4,10]
5
Prelude> head [1,2,3,4,10]
1
Prelude> length (tail [1,2,3,4,10])
4

3.3.1 Strings

In Haskell, a String is simply a list of Chars. So, we can create the string “Hello” as:

Prelude> ’H’:’e’:’l’:’l’:’o’:[]
"Hello"

Lists (and, of course, strings) can be concatenated using the ++ operator:

Prelude> "Hello " ++ "World"
"Hello World"

Additionally, non-string values can be converted to strings using the show func-
tion, and strings can be converted to non-string values using the read function. Of
course, if you try to read a value that’s malformed, an error will be reported (note that
this is a run-time error, not a compile-time error):

Prelude> "Five squared is " ++ show (5*5)
"Five squared is 25"
Prelude> read "5" + 3
8
Prelude> read "Hello" + 3
Program error: Prelude.read: no parse

Above, the exact error message is implementation dependent. However, the inter-
preter has inferred that you’re trying to add three to something. This means that when
we execute read "Hello", we expect to be returned a number. However, "Hello"
cannot be parsed as a number, so an error is reported.

18 CHAPTER 3. LANGUAGE BASICS

3.3.2 Simple List Functions

Much of the computation in Haskell programs is done by processing lists. There are
three primary list-processing functions: map, filter and foldr (also foldl).

The map function takes as arguments a list of values and a function that should be
applied to each of the values. For instance, there is a built-in function Char.toUpper
that takes as input a Char and produces a Char that is the upper-case version of the
original argument. So, to covert an entire string (which is simply a list of characters)
to upper case, we can map the toUpper function across the entire list:

Prelude> map Char.toUpper "Hello World"
"HELLO WORLD"

WARNING Hugs users: Hugs doesn’t like qualified names like
Char.toUpper. In Hugs, simply use toUpper.

When you map across a list, the length of the list never changes – only the individ-
ual values in the list change.

To remove elements from the list, you can use the filter function. This function
allows you to remove certain elements from a list depending on their value, but not on
their context. For instance, the function Char.isLower tells you whether a given
character is lower case. We can filter out all non-lowercase characters using this:

Prelude> filter Char.isLower "Hello World"
"elloorld"

The function foldr takes a little more getting used to. foldr takes three argu-
ments: a function, an initial value and a list. The best way to think about foldr is
that it replaces occurences of the list cons operator (:) with the function parameter and
replaces the empty list constructor ([]) with the initial value. Thus, if we have a list:

3 : 8 : 12 : 5 : []

and we apply foldr (+) 0 to it, we get:

3 + 8 + 12 + 5 + 0

which sums the list. We can test this:

Prelude> foldr (+) 0 [3,8,12,5]
28

We can perform the same sort of operation to calculate the product of all the ele-
ments on a list:

Prelude> foldr (*) 1 [4,8,5]
160

3.3. LISTS 19

We said earlier that folding is like replacing (:) with a particular function and ([])
with an initial element. This raises a question as to what happens when the function
isn’t associative (a function (·) is associative if a · (b · c) = (a · b) · c). When we write
4 · 8 · 5 · 1, we need to specify where to put the parentheses. Namely, do we mean
((4 · 8) · 5) · 1 or 4 · (8 · ((5 · 1))? foldr assumes the function is right-associative (i.e.,
the correct bracketing is the latter). Thus, when we use it on a non-associtive function
(like minus), we can see the effect:

Prelude> foldr (-) 1 [4,8,5]
0

The exact derivation of this looks something like:

foldr (-) 1 [4,8,5]
==> 4 - (foldr (-) 1 [8,5])
==> 4 - (8 - foldr (-) 1 [5])
==> 4 - (8 - (5 - foldr (-) 1 []))
==> 4 - (8 - (5 - 1))
==> 4 - (8 - 4)
==> 4 - 4
==> 0

The foldl function goes the other way and effectively produces the opposite
bracketing. foldl looks the same when applied, so we could have done summing
just as well with foldl:

Prelude> foldl (+) 0 [3,8,12,5]
28

However, we get different results when using the non-associative function minus:

Prelude> foldl (-) 1 [4,8,5]
-16

This is because foldl uses the opposite bracketing. The way it accomplishes this
is essentially by going all the way down the list, taking the last element and combining
it with the initial value via the provided function. It then takes the second-to-last ele-
ment in the list and combines it to this new value. It does so until there is no more list
left.

The derivation here proceeds in the opposite fashion:

foldl (-) 1 [4,8,5]
==> foldl (-) (1 - 4) [8,5]
==> foldl (-) ((1 - 4) - 8) [5]
==> foldl (-) (((1 - 4) - 8) - 5) []

20 CHAPTER 3. LANGUAGE BASICS

==> ((1 - 4) - 8) - 5
==> ((-3) - 8) - 5
==> (-11) - 5
==> -16

Note that once the foldl goes away, the parenthesization is exactly the opposite
of the foldr.

NOTE foldl is often more efficient than foldr for reasons that
we will discuss in Section 7.8. However, foldr can work on infinite
lists, while foldl cannot. This is because before foldl does any-
thing, it has to go to the end of the list. On the other hand, foldr
starts producing output immediately. For instance, foldr (:) []
[1,2,3,4,5] simply returns the same list. Even if the list were in-
finite, it would produce output. A similar function using foldl would
fail to produce any output.

If this discussion of the folding functions is still somewhat unclear, that’s okay.
We’ll discuss them further in Section 7.8.

Exercises
Exercise 3.3 Use map to convert a string into a list of booleans, each element in the
new list representing whether or not the original element was a lower-case character.
That is, it should take the string “aBCde” and return [True,False,False,True,True].

Exercise 3.4 Use the functions mentioned in this section (you will need two of them)
to compute the number of lower-case letters in a string. For instance, on “aBCde” it
should return 3.

Exercise 3.5 We’ve seen how to calculate sums and products using folding functions.
Given that the function max returns the maximum of two numbers, write a function
using a fold that will return the maximum value in a list (and zero if the list is empty).
So, when applied to [5,10,2,8,1] it will return 10. Assume that the values in the list are
always ≥ 0. Explain to yourself why it works.

Exercise 3.6 Write a function that takes a list of pairs of length at least 2 and re-
turns the first component of the second element in the list. So, when provided with
[(5,’b’),(1,’c’),(6,’a’)], it will return 1.

3.4 Source Code Files

As programmers, we don’t want to simply evaluate small expressions like these – we
want to sit down, write code in our editor of choice, save it and then use it.

We already saw in Sections 2.2 and 2.3 how to write a Hello World program and
how to compile it. Here, we show how to use functions defined in a source-code file
in the interactive environment. To do this, create a file called Test.hs and enter the
following code:

3.4. SOURCE CODE FILES 21

module Test
where

x = 5
y = (6, "Hello")
z = x * fst y

This is a very simple “program” written in Haskell. It defines a module called
“Test” (in general module names should match file names; see Section 6 for more on
this). In this module, there are three definitions: x, y and z. Once you’ve written
and saved this file, in the directory in which you saved it, load this in your favorite
interpreter, by executing either of the following:

% hugs Test.hs
% ghci Test.hs

This will start Hugs or GHCi, respectively, and load the file. Alternatively, if you
already have one of them loaded, you can use the “:load” command (or just “:l”) to
load a module, as:

Prelude> :l Test.hs
...
Test>

Between the first and last line, the interpreter will print various data to explain what
it is doing. If any errors appear, you probably mistyped something in the file; double
check and then try again.

You’ll notice that where it used to say “Prelude” it now says “Test.” That means
that Test is the current module. You’re probably thinking that “Prelude” must also be
a module. Exactly correct. The Prelude module (usually simply referred to as “the
Prelude”) is always loaded and contains the standard definitions (for instance, the (:) the Prelude
operator for lists, or (+) or (*), fst, snd and so on).

Now that we’ve loaded Test, we can use things that were defined in it. For example:

Test> x
5
Test> y
(6,"Hello")
Test> z
30

Perfect, just as we expected!
One final issue regarding how to compile programs to stand-alone executables re-

mains. In order for a program to be an executable, it must have the module name

22 CHAPTER 3. LANGUAGE BASICS

“Main” and must contain a function called main. So, if you go in to Test.hs and re-
name it to “Main” (change the line that reads module Test to module Main), we
simply need to add a main function. Try this:

main = putStrLn "Hello World"

Now, save the file, and compile it (refer back to Section 2 for information on how
to do this for your compiler). For example, in GHC, you would say:

% ghc --make Test.hs -o test

NOTE For Windows, it would be “-o test.exe”

This will create a file called “test” (or on Windows, “test.exe”) that you can then
run.

% ./test
Hello World

NOTE Or, on Windows:

C:\> test.exe
Hello World

3.5 Functions

Now that we’ve seen how to write code in a file, we can start writing functions. As you
might have expected, functions are central to Haskell, as it is a functional language.
This means that the evaluation of a program is simply the evaluation of a function.

We can write a simple function to square a number and enter it into our Test.hs
file. We might define this as follows:

square x = x * x

In this function definition, we say that we’re defining a function square that takes
one argument (aka parameter), which we call x. We then say that the value of square
x is equal to x * x.

Haskell also supports standard conditional expressions. For instance, we could
define a function that returns −1 if its argument is less than 0; 0 if its argument is 0;
and 1 if its argument is greater than 0 (this is called the signum function):

3.5. FUNCTIONS 23

signum x =
if x < 0

then -1
else if x > 0
then 1
else 0

You can experiment with this as:

Test> signum 5
1
Test> signum 0
0
Test> signum (5-10)
-1
Test> signum (-1)
-1

Note that the parenthesis around “-1” in the last example are required; if missing,
the system will think you are trying to subtract the value “1” from the value “signum,”
which is illtyped.

The if/then/else construct in Haskell is very similar to that of most other program-
ming languages; however, you must have both a then and an else clause. It evaluates if/then/else
the condition (in this case x < 0 and, if this evaluates to True, it evaluates the then
condition; if the condition evaluated to False, it evaluates the else condition).

You can test this program by editing the file and loading it back into your interpreter.
If Test is already the current module, instead of typing :l Test.hs again, you can
simply type :reload or just :r to reload the current file. This is usually much faster.

Haskell, like many other languages, also supports case constructions. These are case/of
used when there are multiple values that you want to check against (case expressions
are actually quite a bit more powerful than this – see Section 7.4 for all of then details).

Suppose we wanted to define a function that had a value of 1 if its argument were
0; a value of 5 if its argument were 1; a value of 2 if its argument were 2; and a value of
−1 in all other instances. Writing this function using if statements would be long and
very unreadable; so we write it using a case statement as follows (we call this function
f):

f x =
case x of

0 -> 1
1 -> 5
2 -> 2
_ -> -1

24 CHAPTER 3. LANGUAGE BASICS

In this program, we’re defining f to take an argument x and then inspect the value
of x. If it matches 0, the value of f is 1. If it matches 1, the value of f is 5. If it maches
2, then the value of f is 2; and if it hasn’t matched anything by that point, the value of
f is −1 (the underscore can be thought of as a “wildcard” – it will match anything) .wildcard

The indentation here is important. Haskell uses a system called “layout” to struc-
ture its code (the programming language Python uses a similar system). The layout
system allows you to write code without the explicit semicolons and braces that other
languages like C and Java require.

WARNING Because whitespace matters in Haskell, you need to be
careful about whether you are using tabs or spaces. If you can configure
your editor to never use tabs, that’s probably better. If not, make sure
your tabs are always 8 spaces long, or you’re likely to run in to problems.

The general rule for layout is that an open-brace is inserted after the keywords
where, let, do and of, and the column position at which the next command appears
is remembered. From then on, a semicolon is inserted before every new line that is
indented the same amount. If a following line is indented less, a close-brace is inserted.
This may sound complicated, but if you follow the general rule of indenting after each
of those keywords, you’ll never have to remember it (see Section 7.11 for a more
complete discussion of layout).

Some people prefer not to use layout and write the braces and semicolons explicitly.
This is perfectly acceptable. In this style, the above function might look like:

f x = case x of
{ 0 -> 1 ; 1 -> 5 ; 2 -> 2 ; _ -> 1 }

Of course, if you write the braces and semicolons explicitly, you’re free to structure
the code as you wish. The following is also equally valid:

f x =
case x of { 0 -> 1 ;
1 -> 5 ; 2 -> 2

; _ -> 1 }

However, structuring your code like this only serves to make it unreadable (in this
case).

Functions can also be defined piece-wise, meaning that you can write one version
of your function for certain parameters and then another version for other parameters.
For instance, the above function f could also be written as:

f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1

3.5. FUNCTIONS 25

Here, the order is important. If we had put the last line first, it would have matched
every argument, and f would return -1, regardless of its argument (most compilers
will warn you about this, though, saying something about overlapping patterns). If we
had not included this last line, f would produce an error if anything other than 0, 1 or
2 were applied to it (most compilers will warn you about this, too, saying something
about incomplete patterns). This style of piece-wise definition is very popular and will
be used quite frequently throughout this tutorial. These two definitions of f are actually
equivalent – this piece-wise version is translated into the case expression.

More complicated functions can be built from simpler functions using function
composition. Function composition is simply taking the result of the application of one
function and using that as an argument for another. We’ve already seen this way back
in arithmetic (Section 3.1), when we wrote 5*4+3. In this, we were evaluating 5 ∗ 4
and then applying +3 to the result. We can do the same thing with our square and f
functions:

Test> square (f 1)
25
Test> square (f 2)
4
Test> f (square 1)
5
Test> f (square 2)
-1

The result of each of these function applications is fairly straightforward. The
parentheses around the inner function are necessary; otherwise, in the first line, the
interpreter would think that you were trying to get the value of “square f,” which
has no meaning. Function application like this is fairly standard in most programming
languages. There is another, more mathematically oriented, way to express function
composition, using the (.) (just a single period) function. This (.) function is supposed
to look like the (◦) operator in mathematics.

NOTE In mathematics we write f ◦ g to mean “f following g,” in
Haskell we write f . g also to mean “f following g.”
The meaning of f ◦ g is simply that (f ◦ g)(x) = f(g(x)). That is,
applying the value x to the function f ◦ g is the same as applying it to g,
taking the result, and then applying that to f .

The (.) function (called the function composition function), takes two functions function composition
and makes them in to one. For instance, if we write (square . f), this means that
it creates a new function that takes an argument, applies f to that argument and then
applies square to the result. Conversely, (f . square) means that it creates
a new function that takes an argument, applies square to that argument and then
applies f to the result. We can see this by testing it as before:

Test> (square . f) 1
25

26 CHAPTER 3. LANGUAGE BASICS

Test> (square . f) 2
4
Test> (f . square) 1
5
Test> (f . square) 2
-1

Here, we must enclose the function composition in parentheses; otherwise, the
Haskell compiler will think we’re trying to compose square with the value f 1 in
the first line, which makes no sense since f 1 isn’t even a function.

It would probably be wise to take a little time-out to look at some of the functions
that are defined in the Prelude. Undoubtedly, at some point, you will accidentally
rewrite some already-existing function (I’ve done it more times than I can count), but
if we can keep this to a minimum, that would save a lot of time. Here are some simple
functions, some of which we’ve already seen:

sqrt the square root function
id the identity function: id x = x
fst extracts the first element from a pair
snd extracts the second element from a pair
null tells you whether or not a list is empty
head returns the first element on a non-empty list
tail returns everything but the first element of a non-empty list
++ concatenates two lists
== checks to see if two elements are equal
/= checks to see if two elements are unequal

Here, we show example usages of each of these functions:

Prelude> sqrt 2
1.41421
Prelude> id "hello"
"hello"
Prelude> id 5
5
Prelude> fst (5,2)
5
Prelude> snd (5,2)
2
Prelude> null []
True
Prelude> null [1,2,3,4]
False
Prelude> head [1,2,3,4]
1
Prelude> tail [1,2,3,4]
[2,3,4]
Prelude> [1,2,3] ++ [4,5,6]

3.5. FUNCTIONS 27

[1,2,3,4,5,6]
Prelude> [1,2,3] == [1,2,3]
True
Prelude> ’a’ /= ’b’
True
Prelude> head []

Program error: {head []}

We can see that applying head to an empty list gives an error (the exact error
message depends on whether you’re using GHCi or Hugs – the shown error message is
from Hugs).

3.5.1 Let Bindings

Often we wish to provide local declarations for use in our functions. For instance, if
you remember back to your grade school mathematics courses, the following equation
is used to find the roots (zeros) of a polynomial of the form ax2 + bx + c = 0: x =
(−b ±

√
b2 − 4ac)/2a. We could write the following function to compute the two

values of x:

roots a b c =
((-b + sqrt(b*b - 4*a*c)) / (2*a),
(-b - sqrt(b*b - 4*a*c)) / (2*a))

To remedy this problem, Haskell allows for local bindings. That is, we can create
values inside of a function that only that function can see. For instance, we could
create a local binding for sqrt(b*b-4*a*c) and call it, say, det and then use that
in both places where sqrt(b*b - 4*a*c) occurred. We can do this using a let/in
declaration:

roots a b c =
let det = sqrt (b*b - 4*a*c)
in ((-b + det) / (2*a),

(-b - det) / (2*a))

In fact, you can provide multiple declarations inside a let. Just make sure they’re
indented the same amount, or you will have layout problems:

roots a b c =
let det = sqrt (b*b - 4*a*c)

twice_a = 2*a
in ((-b + det) / twice_a,

(-b - det) / twice_a)

28 CHAPTER 3. LANGUAGE BASICS

3.5.2 Infix

Infix functions are ones that are composed of symbols, rather than letters. For instance,
(+), (*), (++) are all infix functions. You can use them in non-infix mode by
enclosing them in parentheses. Hence, the two following expressions are the same:

Prelude> 5 + 10
15
Prelude> (+) 5 10
15

Similarly, non-infix functions (like map) can be made infix by enclosing them in
backquotes (the ticks on the tilde key on American keyboards):

Prelude> map Char.toUpper "Hello World"
"HELLO WORLD"
Prelude> Char.toUpper ‘map‘ "Hello World"
"HELLO WORLD"

WARNING Hugs users: Hugs doesn’t like qualified names like
Char.toUpper. In Hugs, simply use toUpper.

3.6 Comments

There are two types of comments in Haskell: line comments and block comments.
Line comments begin with the token -- and extend until the end of the line. Block
comments begin with {- and extend to a corresponding -}. Block comments can be
nested.

NOTE The -- in Haskell corresponds to // in C++ or Java, and {-
and -} correspond to /* and */.

Comments are used to explain your program in English and are completely ignored
by compilers and interpreters. For example:

module Test2
where

main =
putStrLn "Hello World" -- write a string

-- to the screen

{- f is a function which takes an integer and
produces integer. {- this is an embedded

3.7. RECURSION 29

comment -} the original comment extends to the
matching end-comment token: -}
f x =

case x of
0 -> 1 -- 0 maps to 1
1 -> 5 -- 1 maps to 5
2 -> 2 -- 2 maps to 2
_ -> -1 -- everything else maps to -1

This example program shows the use of both line comments and (embedded) block
comments.

3.7 Recursion

In imperative languages like C and Java, the most basic control structure is a loop (like
a for loop). However, for loops don’t make much sense in Haskell because they require
destructive update (the index variable is constantly being updated). Instead, Haskell
uses recursion.

A function is recursive if it calls itself (see Appendix B for more). Recursive func-
tions exist also in C and Java but are used less than they are in functional languages.
The prototypical recursive function is the factorial function. In an imperative language,
you might write this as something like:

int factorial(int n) {
int fact = 1;
for (int i=2; i <= n; i++)
fact = fact * i;

return fact;
}

While this code fragment will successfully compute factorials for positive integers,
it somehow ignores the basic definition of factorial, usually given as:

n! =

{

1 n = 1
n ∗ (n − 1)! otherwise

This definition itself is exactly a recursive definition: namely the value of n! de-
pends on the value of (n − 1)!. If you think of ! as a function, then it is calling itself.
We can translate this definition almost verbatim into Haskell code:

factorial 1 = 1
factorial n = n * factorial (n-1)

This is likely the simplest recursive function you’ll ever see, but it is correct.

30 CHAPTER 3. LANGUAGE BASICS

NOTE Of course, an imperative recursive version could be written:

int factorial(int n) {
if (n == 1)
return 1;

else
return n * factorial(n-1);

}

but this is likely to be much slower than the loop version in C.

Recursion can be a difficult thing to master. It is completely analogous to the
concept of induction in mathematics (see Chapter B for a more formal treatment of
this). However, usually a problem can be thought of as having one or more base cases
and one or more recursive-cases. In the case of factorial, there is one base case
(when n = 1) and one recursive case (when n > 1). For designing your own recusive
algorithms, it is often useful to try to differentiate these two cases.

Turning now to the task of exponentiation, suppose that we have two positive in-
tegers a and b, and that we want to calculate ab. This problem has a single base case:
namely when b is 1. The recursive case is when b > 1. We can write a general form as:

ab =

{

a b = 1
a ∗ ab−1 otherwise

Again, this translates directly into Haskell code:

exponent a 1 = a
exponent a b = a * exponent a (b-1)

Just as we can define recursive functions on integers, so can we define recursive
functions on lists. In this case, usually the base case is the empty list [], and the
recursive case is a cons list (i.e., a value consed on to another list).

Consider the task of calculating the length of a list. We can again break this down
into two cases: either we have an empty list or we have a non-empty list. Clearly the
length of an empty list is zero. Furthermore, if we have a cons list, then the length of
this list is just the length of its tail plus one. Thus, we can define a length function as:

my_length [] = 0
my_length (x:xs) = 1 + my_length xs

NOTE Whenever we provide alternative definitions for standard
Haskell functions, we prefix them with my so the compiler doesn’t be-
come confused.

3.8. INTERACTIVITY 31

Similarly, we can consider the filter function. Again, the base case is the empty
list, and the recursive case is a cons list. However, this time, we’re choosing whether
to keep an element, depending on whether or not a particular predicate holds. We can
define the filter function as:

my_filter p [] = []
my_filter p (x:xs) =
if p x
then x : my_filter p xs
else my_filter p xs

In this code, when presented with an empty list, we simply return an empty list.
This is because filter cannot add elements; it can only remove them.

When presented with a list of the form (x:xs), we need to decide whether or not
to keep the value x. To do this, we use an if statement and the predicate p. If p x is
true, then we return a list that begins with x followed by the result of filtering the tail
of the list. If p x is false, then we exclude x and return the result of filtering the tail of
the list.

We can also define map and both fold functions using explicit recursion. See the
exercises for the definition of map and Chapter 7 for the folds.

Exercises
Exercise 3.7 The fibonacci sequence is defined by:

Fn =

{

1 n = 1 or n = 2
Fn−2 + Fn−1 otherwise

Write a recursive function fib that takes a positive integer n as a parameter and
calculates Fn.

Exercise 3.8 Define a recursive function mult that takes two positive integers a and
b and returns a*b, but only uses addition (i.e., no fair just using multiplication). Begin
by making a mathematical definition in the style of the previous exercise and the rest of
this section.

Exercise 3.9 Define a recursive function my map that behaves identically to the stan-
dard function map.

3.8 Interactivity

If you are familiar with books on other (imperative) languages, you might be wonder-
ing why you haven’t seen many of the standard programs written in tutorials of other
languages (like ones that ask the user for his name and then says “Hi” to him by name).
The reason for this is simple: Being a pure functional language, it is not entirely clear
how one should handle operations like user input.

32 CHAPTER 3. LANGUAGE BASICS

After all, suppose you have a function that reads a string from the keyboard. If
you call this function twice, and the user types something the first time and something
else the second time, then you no longer have a function, since it would return two
different values. The solution to this was found in the depths of category theory, a
branch of formal mathematics: monads. We’re not yet ready to talk about monadsmonads
formally, but for now, think of them simply as a convenient way to express operations
like input/output. We’ll discuss them in this context much more in Chapter 5 and then
discuss monads for monads’ sake in Chapter 9.

Suppose we want to write a function that’s interactive. The way to do this is to
use the do keyword. This allows us to specify the order of operations (remember thatdo notation
normally, since Haskell is a lazy language, the order in which operations are evaluated
in it is unspecified). So, to write a simple program that asks a user for his name and
then address him directly, enter the following code into “Name.hs”:

module Main
where

import IO

main = do
hSetBuffering stdin LineBuffering
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

NOTE The parentheses are required on the second instance of
putStrLn but not the first. This is because ++ binds more tightly than
function application, so without the parenthesis, the second would be
interpreted as (putStrLn "Hello, ") ++ name ++

You can then either load this code in your interpreter and execute main by simply
typing “main,” or you can compile it and run it from the command line. I’ll show the
results of the interactive approach:

Main> main
Please enter your name:
Hal
Hello, Hal, how are you?
Main>

And there’s interactivity. Let’s go back and look at the code a little, though. We
name the module “Main,” so that we can compile it. We name the primary function
“main,” so that the compile knows that this is the function to run when the program
is run. On the fourth line, we import the IO library, so that we can access the IO

3.8. INTERACTIVITY 33

functions. On the seventh line, we start with do, telling Haskell that we’re executing a
sequence of commands.

The first command is hSetBuffering stdin LineBuffering, which you
should probably ignore for now (incidentally, this is only required by GHC – in Hugs
you can get by without it). The necessity for this is because, when GHC reads input, it
expects to read it in rather large blocks. A typical person’s name is nowhere near large
enough to fill this block. Thus, when we try to read from stdin, it waits until it’s
gotten a whole block. We want to get rid of this, so we tell it to use LineBuffering
instead of block buffering.

The next command is putStrLn, which prints a string to the screen. On the
ninth line, we say “name <- getLine.” This would normally be written “name =
getLine,” but using the arrow instead of the equal sign shows that getLine isn’t
a real function and can return different values. This command means “run the action
getLine, and store the results in name.”

The last line constructs a string using what we read in the previous line and then
prints it to the screen.

Another example of a function that isn’t really a function would be one that returns
a random value. In this context, a function that does this is called randomRIO. Us-
ing this, we can write a “guess the number” program. Enter the following code into
“Guess.hs”:

module Main
where

import IO
import Random

main = do
hSetBuffering stdin LineBuffering
num <- randomRIO (1::Int, 100)
putStrLn "I’m thinking of a number between 1 and 100"
doGuessing num

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
let guessNum = read guess
if guessNum < num
then do putStrLn "Too low!"

doGuessing num
else if read guess > num

then do putStrLn "Too high!"
doGuessing num

else do putStrLn "You Win!"

Let’s examine this code. On the fifth line we write “import Random” to tell the

34 CHAPTER 3. LANGUAGE BASICS

compiler that we’re going to be using some random functions (these aren’t built into
the Prelude). In the first line of main, we ask for a random number in the range
(1, 100). We need to write ::Int to tell the compiler that we’re using integers here –
not floating point numbers or other numbers. We’ll talk more about this in Section 4.
On the next line, we tell the user what’s going on, and then, on the last line of main,
we tell the compiler to execute the command doGuessing.

The doGuessing function takes the number the user is trying to guess as an
argument. First, it asks the user to guess and then accepts their guess (which is a
String) from the keyboard. The if statement checks first to see if their guess is too
low. However, since guess is a string, and num is an integer, we first need to convert
guess to an integer by reading it. Since “read guess” is a plain, pure function
(and not an IO action), we don’t need to use the <- notation (in fact, we cannot); we
simply bind the value to guessNum. Note that while we’re in do notation, we don’t
need ins for lets.

If they guessed too low, we inform them and then start doGuessing over again.
If they didn’t guess too low, we check to see if they guessed too high. If they did,
we tell them and start doGuessing again. Otherwise, they didn’t guess too low and
they didn’t guess too high, so they must have gotten it correct. We tell them that they
won and exit. The fact that we exit is implicit in the fact that there are no commands
following this. We don’t need an explicit return () statement.

You can either compile this code or load it into your interpreter, and you will get
something like:

Main> main
I’m thinking of a number between 1 and 100
Enter your guess:
50
Too low!
Enter your guess:
75
Too low!
Enter your guess:
85
Too high!
Enter your guess:
80
Too high!
Enter your guess:
78
Too low!
Enter your guess:
79
You Win!

The recursive action that we just saw doesn’t actually return a value that we use in
any way. In the case when it does, the “obvious” way to write the command is actually

3.8. INTERACTIVITY 35

incorrect. Here, we will give the incorrect version, explain why it is wrong, then give
the correct version.

Let’s say we’re writing a simple program that repeatedly asks the user to type in a
few words. If at any point the user enters the empty word (i.e., he just hits enter without
typing anything), the program prints out everything he’s typed up until that point and
then exits. The primary function (actually, an action) in this program is one that asks
the user for a word, checks to see if it’s empty, and then either continues or ends. The
incorrect formulation of this might look something like:

askForWords = do
putStrLn "Please enter a word:"
word <- getLine
if word == ""
then return []
else return (word : askForWords)

Before reading ahead, see if you can figure out what is wrong with the above code.
The error is on the last line, specifically with the term word : askForWords.

Remeber that when using (:), we are making a list out of an element (in this case
word) and another list (in this case, askForWords). However, askForWords is
not a list; it is an action that, when run, will produce a list. That means that before we
can attach anything to the front, we need to run the action and take the result. In this
case, we want to do something like:

askForWords = do
putStrLn "Please enter a word:"
word <- getLine
if word == ""
then return []
else do

rest <- askForWords
return (word : rest)

Here, we first run askForWords, take the result and store it in the variable rest.
Then, we return the list created from word and rest.

By now, you should have a good understanding of how to write simple functions,
compile them, test functions and programs in the interactive environment, and manip-
ulate lists.

Exercises
Exercise 3.10 Write a program that will repeatedly ask the user for numbers until she
types in zero, at which point it will tell her the sum of all the numbers, the product of
all the numbers, and, for each number, its factorial. For instance, a session might look
like:

36 CHAPTER 3. LANGUAGE BASICS

Give me a number (or 0 to stop):
5
Give me a number (or 0 to stop):
8
Give me a number (or 0 to stop):
2
Give me a number (or 0 to stop):
0
The sum is 15
The product is 80
5 factorial is 120
8 factorial is 40320
2 factorial is 2

Hint: write an IO action that reads a number and, if it’s zero, returns the empty list. If
it’s not zero, it recurses itself and then makes a list out of the number it just read and
the result of the recursive call.

Chapter 4

Type Basics

Haskell uses a system of static type checking. This means that every expression in
Haskell is assigned a type. For instance ’a’ would have type Char, for “character.”
Then, if you have a function which expects an argument of a certain type and you give
it the wrong type, a compile-time error will be generated (that is, you will not be able
to compile the program). This vastly reduces the number of bugs that can creep into
your program.

Furthermore, Haskell uses a system of type inference. This means that you don’t
even need to specify the type of expressions. For comparison, in C, when you define
a variable, you need to specify its type (for instance, int, char, etc.). In Haskell, you
needn’t do this – the type will be inferred from context.

NOTE If you want, you certainly are allowed to explicitely specify
the type of an expression; this often helps debugging. In fact, it is some-
times considered good style to explicitly specify the types of outermost
functions.

Both Hugs and GHCi allow you to apply type inference to an expression to find its
type. This is done by using the :t command. For instance, start up your favorite shell
and try the following:

Prelude> :t ’c’
’c’ :: Char

This tells us that the expression ’c’ has type Char (the double colon :: is used
throughout Haskell to specify types).

4.1 Simple Types

There are a slew of built-in types, including Int (for integers, both positive and neg-
ative), Double (for floating point numbers), Char (for single characters), String (for

37

38 CHAPTER 4. TYPE BASICS

strings), and others. We have already seen an expression of type Char; let’s examime
one of type String:

Prelude> :t "Hello"
"Hello" :: String

You can also enter more complicated expressions, for instance, a test of equality:

Prelude> :t ’a’ == ’b’
’a’ == ’b’ :: Bool

You should note than even though this expression is false, it still has a type, namely
the type Bool.

NOTE Bool is short for Boolean (usually pronounced “boo-lee-uhn”,
though I’ve heard “boo-leen” once or twice) and has two possible values:
True and False.

You can observe the process of type checking and type inference by trying to get
the shell to give you the type of an ill-typed expression. For instance, the equality
operator requires that the type of both of its arguments are of the same type. We can
see that Char and String are of different types by trying to compare a character to a
string:

Prelude> :t ’a’ == "a"
ERROR - Type error in application
*** Expression : ’a’ == "a"
*** Term : ’a’
*** Type : Char
*** Does not match : [Char]

The first line of the error (the line containing “Expression”) tells us the expression
in which the type error occured. The second line tells us which part of this expression
is ill-typed. The third line tells us the inferred type of this term and the fourth line
tells us what it needs to have matched. In this case, it says that type type Char doesn’t
match the type [Char] (a list a characters – a string in Haskell is represented as a list of
characters).

As mentioned before, you can explicitely specify the type of an expression using
the :: operator. For instance, instead of ”a” in the previous example, we could have
written (”a”::String). In this case, this has no effect since there’s only one possible
interpretation of ”a”. However, consider the case of numbers. You can try:

Prelude> :t 5 :: Int
5 :: Int
Prelude> :t 5 :: Double
5 :: Double

4.2. POLYMORPHIC TYPES 39

Here, we can see that the number 5 can be instantiated as either an Int our a Double.
What if we don’t specify the type?

Prelude> :t 5
5 :: Num a => a

Not quite what you expected? What this means, briefly, is that if some type a is
an instance of the Num class, then type type of the expression 5 can be of type a.
If that made no sense, that’s okay for now. In Section 4.3 we talk extensively about
type classes (which is what this is). The way to read this, though, is to say “a being an
instance of Num implies a.”

Exercises
Exercise 4.1 Figure out for yourself, and then verify the types of the following expres-
sions, if they have a type. Also note if the expression is a type error:

1. ’h’:’e’:’l’:’l’:’o’:[]

2. [5,’a’]

3. (5,’a’)

4. (5::Int) + 10

5. (5::Int) + (10::Double)

4.2 Polymorphic Types

Haskell employs a polymorhpic type system. This essentially means that you can have
type variables, which we have alluded to before. For instance, note that a function like
tail doesn’t care what the elements in the list are:

Prelude> tail [5,6,7,8,9]
[6,7,8,9]
Prelude> tail "hello"
"ello"
Prelude> tail ["the","man","is","happy"]
["man","is","happy"]

This is possible because tail has a polymorphic type: [α] → [α]. That means it
can take as an argument any list and return a value which is a list of the same type.

The same analysis can explain the type of fst:

Prelude> :t fst
forall a b . (a,b) -> a

40 CHAPTER 4. TYPE BASICS

Here, GHCi has made explicit the universal quantification of the type values. That
is, it is saying that for all types a and b, fst is a function from (a, b) to a.

Exercises
Exercise 4.2 Figure out for yourself, and then verify the types of the following expres-
sions, if they have a type. Also note if the expression is a type error:

1. snd

2. head

3. null

4. head . tail

5. head . head

4.3 Type Classes

We saw last section some strange typing having to do with the number five. Before we
delve too deeply into the subject of type classes, let’s take a step back and see some of
the motivation.

4.3.1 Motivation

In many languages (C++, Java, etc.), there exists a system of overloading. That is,
a function can be written that takes parameters of differing types. For instance, the
cannonical example is the equality function. If we want to compare two integers, we
should use an integer comparison; if we want to compare two floating point numbers,
we should use a floating point comparison; if we want to compare two characters,
we should use a character comparison. In general, if we want to compare two things
which have type α, we want to use an α-compare. We call α a type variable since it is
a variable whose value is a type.

NOTE In general, type variables will be written using the first part of
the Greek alphabet: α, β, γ, δ,

Unfortunately, this presents some problems for static type checking, since the type
checker doesn’t know which types a certain operation (for instance, equality testing)
will be defined for. There are as many solutions to this problem as there are statically
typed languages (perhaps a slight exageration, but not so much so). The one chosen
in Haskell is the system of type classes. Whether this is the “correct” solution or the
“best” solution of course depends on your application domain. It is, however, the one
we have, so you should learn to love it.

4.3. TYPE CLASSES 41

4.3.2 Equality Testing

Returning to the issue of equality testing, what we want to be able to do is define a
function == (the equality operator) which takes two parameters, each of the same type
(call it α), and returns a boolean. But this function may not be defined for every type;
just for some. Thus, we associate this function == with a type class, which we call
Eq. If a specific type α belongs to a certain type class (that is, all functions associated
with that class are implemented for α), we say that α is an instance of that class. For
instance, Int is an instance of Eq since equality is defined over integers.

4.3.3 The Num Class

In addition to overloading operators like ==, Haskell has overloaded numeric constants
(i.e., 1, 2, 3, etc.). This was done so that when you type in a number like 5, the
compiler is free to say 5 is an integer or floating point number as it sees fit. It defines
the Num class to contain all of these numbers and certain minimal operations over
them (addition, for instance). The basic numeric types (Int, Double) are defined to be
instances of Num.

We have only skimmed the surface of the power (and complexity) of type classes
here. There will be much more discussion of them in Section 8.4, but we need some
more background before we can get there. Before we do that, we need to talk a little
more about functions.

4.3.4 The Show Class

Another of the standard classes in Haskell is the Show class. Types which are mem-
bers of the Show class have functions which convert values of that type to a string.
This function is called show. For instance show applied to the integer 5 is the string
“5”; show applied to the character ’a’ is the three-character string “’a”’ (the first and
last characters are apostrophes). show applied to a string simply puts quotes around it.
You can test this in the interpreter:

Prelude> show 5
"5"
Prelude> show ’a’
"’a’"
Prelude> show "Hello World"
"\"Hello World\""

NOTE The reason the backslashes appear in the last line is because
the interior quotes are “escaped”, meaning that they are part of the string,
not part of the interpreter printing the value. The actual string doesn’t
contain the backslashes.

Some types are note instances of Show; functions for example. If you try to show a
function (like sqrt), the compiler or interpreter will give you some cryptic error mes-

42 CHAPTER 4. TYPE BASICS

sage, complaining about a missing instance declaration or an illegal class constraint.

4.4 Function Types

In Haskell, functions are first class values, meaning that just as 1 or ’c’ are values
which have a type, so are functions like square or ++. Before we talk too much about
functions, we need to make a short diversion into very theoretical computer science
(don’t worry, it won’t be too painful) and talk about the lambda calculus.

4.4.1 Lambda Calculus

The name “Lambda Calculus”, while perhaps daunting, describes a fairly simple sys-
tem for representing functions. The way we would write a squaring function in lambda
calculus is: λx.x∗x, which means that we take a value, which we will call x (that’s what
“λx. means) and then multiply it by itself. The λ is called “lambda abstraction.” In
general, lambdas can only have one parameter. If we want to write a function that takes
two numbers, doubles the first and adds it to the second, we would write: λxλy.2∗x+y.
When we apply a value to a lambda expression, we remove the outermost λ and replace
every occurrence of the lambda variable with the value. For instance, if we evaluate
(λx.x ∗ x)5, we remove the lambda and replace every occurrence of x with 5, yielding
(5 ∗ 5) which is 25.

In fact, Haskell is largely based on an extension of the lambda calculus, and these
two expressions can be written directly in Haskell (we simply replace the λ with a
backslash and the . with an arrow; also we don’t need to repeat the lambdas; and, of
course, in Haskell we have to give them names if we’re defining functions):

square = \x -> x*x
f = \x y -> 2*x + y

You can also evaluate lambda expressions in your interactive shell:

Prelude> (\x -> x*x) 5
25
Prelude> (\x y -> 2*x + y) 5 4
14

We can see in the second example that we need to give the lambda abstraction two
arguments, one corresponding to x and the other corresponding to y.

4.4.2 Higher-Order Types

“Higher-Order Types” is the name given to functions. The type given to functions mim-
icks the lambda calculus representation of the functions. For instance, the definition of
square gives λx.x ∗ x. To get the type of this, we first ask ourselves what the type of x

4.4. FUNCTION TYPES 43

is. Say we decide x is an Int. Then, we notice that the function square takes an Int

and produces a value x*x. We know that when we multiply two Ints together, we get
another Int, so the type of the results of square is also an Int. Thus, we say the type
of square is Int → Int.

We can apply a similar analysis to the function f above. The value of this function
(remember, functions are values) is something which takes a value x and given that
value, produces a new value, which takes a value y and produces 2*x+y. For instance,
if we take f and apply only one number to it, we get (λxλy.2x + y)5 which becomes
our new value λy.2(5) + y, where all occurances of x have been replaced with the
applied value, 5.

So we know that f takes an Int and produces a value of some type, of which we’re
not sure. But we know the type of this value is the type of λy.2(5) + y. We ap-
ply the above analysis and find out that this expression has type Int → Int. Thus, f
takes an Int and produces something which has type Int → Int. So the type of f is
Int → (Int → Int).

NOTE The parentheses are not necessary; in function types, if you
have α → β → γ it is assume that β → γ is grouped. If you want the
other way, with α → β grouped, you need to put parentheses around
them.

This isn’t entirely accurate. As we saw before, numbers like 5 aren’t really of type
Int, they are of type Num a ⇒ a.

We can easily find the type of Prelude functions using “:t” as before:

Prelude> :t head
head :: [a] -> a
Prelude> :t tail
tail :: [a] -> [a]
Prelude> :t null
null :: [a] -> Bool
Prelude> :t fst
fst :: (a,b) -> a
Prelude> :t snd
snd :: (a,b) -> b

We read this as: “head” is a function that takes a list containing values of type “a”
and gives back a value of type “a”; “tail” takes a list of “a”s and gives back another list
of “a”s; “null” takes a list of “a”s and gives back a boolean; “fst” takes a pair of type
“(a,b)” and gives back something of type “a”, and so on.

NOTE Saying that the type of fst is (a, b) → a does not necessarily
mean that it simply gives back the first element; it only means that it
gives back something with the same type as the first element.

44 CHAPTER 4. TYPE BASICS

We can also get the type of operators like + and * and ++ and :; however, in order
to do this we need to put them in parentheses. In general, any function which is used
infix (meaning in the middle of two arguments rather than before them) must be put in
parentheses when getting its type.

Prelude> :t (+)
(+) :: Num a => a -> a -> a
Prelude> :t (*)
(*) :: Num a => a -> a -> a
Prelude> :t (++)
(++) :: [a] -> [a] -> [a]
Prelude> :t (:)
(:) :: a -> [a] -> [a]

The types of + and * are the same, and mean that + is a function which, for some
type a which is an instance of Num, takes a value of type a and produces another
function which takes a value of type a and produces a value of type a. In short hand,
we might say that + takes two values of type a and produces a value of type a, but this
is less precise.

The type of ++ means, in shorthand, that, for a given type a, ++ takes two lists of
as and produces a new list of as. Similarly, : takes a value of type a and another value
of type [a] (list of as) and produces another value of type [a].

4.4.3 That Pesky IO Type

You might be tempted to try getting the type of a function like putStrLn:

Prelude> :t putStrLn
putStrLn :: String -> IO ()
Prelude> :t readFile
readFile :: FilePath -> IO String

What in the world is that IO thing? It’s basically Haskell’s way of representing
that these functions aren’t really functions. They’re called “IO Actions” (hence the
IO). The immediate question which arises is: okay, so how do I get rid of the IO.
In brief, you can’t directly remove it. That is, you cannot write a function with type
IO String → String. The only way to use things with an IO type is to combine them
with other functions using (for example), the do notation.

For example, if you’re reading a file using readFile, presumably you want to do
something with the string it returns (otherwise, why would you read the file in the first
place). Suppose you have a function f which takes a String and produces an Int. You
can’t directly apply f to the result of readFile since the input to f is String and the
output of readFile is IOString and these don’t match. However, you can combine
these as:

4.4. FUNCTION TYPES 45

main = do
s <- readFile "somefile"
let i = f s
putStrLn (show i)

Here, we use the arrow convention to “get the string out of the IO action” and then
apply f to the string (called s). We then, for example, print i to the screen. Note that
the let here doesn’t have a corresponding in. This is because we are in a do block.
Also note that we don’t write i <- f s because f is just a normal function, not an
IO action.

4.4.4 Explicit Type Declarations

It is sometimes desirable to explicitly specify the types of some elements or functions,
for one (or more) of the following reasons:

• Clarity

• Speed

• Debugging

Some people consider it good software engineering to specify the types of all top-
level functions. If nothing else, if you’re trying to compile a program and you get type
errors that you cannot understand, if you declare the types of some of your functions
explicitly, it may be easier to figure out where the error is.

Type declarations are written separatly from the function definition. For instance,
we could explicitly type the function square as in the following code (an explicitly
declared type is called a type signature):

square :: Num a => a -> a
square x = x*x

These two lines do not even have to be next to eachother. However, the type that you
specify must match the inferred type of the function definition (or be more specific).
In this definition, you could apply square to anything which is an instance of Num:
Int, Double, etc. However, if you knew apriori that square were only going to be
applied to value of type Int, you could refine its type as:

square :: Int -> Int
square x = x*x

Now, you could only apply square to values of type Int. Moreover, with this def-
inition, the compiler doesn’t have to generate the general code specified in the original

46 CHAPTER 4. TYPE BASICS

function definition since it knows you will only apply square to Ints, so it may be
able to generate faster code.

If you have extensions turned on (“-98” in Hugs or “-fglasgow-exts” in GHC(i)),
you can also add a type signature to expressions and not just functions. For instance,
you could write:

square (x :: Int) = x*x

which tells the compiler that x is an Int; however, it leaves the compiler alone
to infer the type of the rest of the expression. What is the type of square in this
example? Make your guess then you can check it either by entering this code into a file
and loading it into your interpreter or by asking for the type of the expression:

Prelude> :t (\(x :: Int) -> x*x)

since this lambda abstraction is equivalent to the above function declaration.

4.4.5 Functional Arguments

In Section 3.3 we saw examples of functions taking other functions as arguments. For
instance, map took a function to apply to each element in a list, filter took a func-
tion that told it which elements of a list to keep, and foldl took a function which told
it how to combine list elements together. As with every other function in Haskell, these
are well-typed.

Let’s first think about the map function. It’s job is to take a list of elements and
produce another list of elements. These two lists don’t necessarily have to have the
same types of elements. So map will take a value of type [a] and produce a value of
type [b]. How does it do this? It uses the user-supplied function to convert. In order
to convert an a to a b, this function must have type a → b. Thus, the type of map is
(a → b) → [a] → [b], which you can verify in your interpreter with “:t”.

We can apply the same sort of analysis to filter and discern that it has type
(a → Bool) → [a] → [a]. As we presented the foldl function, you might be tempted
to give it type (a → a → a) → a → [a] → a, meaning that you take a function which
combines two as into another one, an initial value of type a, a list of as to produce a final
value of type a. In fact, foldl has a more general type: (a → b → a) → a → [b] → a.
So it takes a function which turn an a and a b into an a, an initial value of type a and a
list of bs. It produces an a.

To see this, we can write a function count which counts how many members of a
list satisfy a given constraint. You can of course you filter and length to do this,
but we will also do it using foldr:

module Count
where

import Char

4.5. DATA TYPES 47

count1 p l = length (filter p l)
count2 p l = foldr (\x c -> if p x then c+1 else c) 0 l

The functioning of count1 is simple. It filters the list l according to the predicate
p, then takes the length of the resulting list. On the other hand, count2 uses the intial
value (which is an integer) to hold the current count. For each element in the list l,
it applies the lambda expression shown. This takes two arguments, c which holds the
current count and x which is the current element in the list that we’re looking at. It
checks to see if p holds about x. If it does, it returns the new value c+1, increasing the
count of elements for which the predicate holds. If it doesn’t, it just returns c, the old
count.

Exercises

Exercise 4.3 Figure out for yourself, and then verify the types of the following expres-
sions, if they have a type. Also note if the expression is a type error:

1. \x -> [x]

2. \x y z -> (x,y:z:[])

3. \x -> x + 5

4. \x -> "hello, world"

5. \x -> x ’a’

6. \x -> x x

7. \x -> x + x

4.5 Data Types

Tuples and lists are nice, common ways to define structured values. However, it is
often desirable to be able to define our own data structures and functions over them.
So-called “datatypes” are defined using the data keyword.

4.5.1 Pairs

For instance, a definition of a pair of elements (much like the standard, build-in pair
type) could be:

data Pair a b = Pair a b

48 CHAPTER 4. TYPE BASICS

Let’s walk through this code one word at a time. First we say “data” meaning that
we’re defining a datatype. We then give the name of the datatype, in this case, “Pair.”
The “a” and “b” that follow “Pair” are type parameters, just like the “a” is the type of
the function map. So up until this point, we’ve said that we’re going to define a data
structure called “Pair” which is parameterized over two types, a and b.

After the equals sign, we specify the constructors of this data type. In this case,
there is a single constructor, “Pair” (this doesn’t necessarily have to have the same
name as the type, but in this case it seems to make more sense). After this pair, we
again write “a b”, which means that in order to construct a Pair we need two values,
one of type a and one of type b.

This definition introduces a function, Pair :: a -> b -> Pair a b that
you can use to construct Pairs. If you enter this code into a file and load it, you can
see how these are constructed:

Datatypes> :t Pair
Pair :: a -> b -> Pair a b
Datatypes> :t Pair ’a’
Pair ’a’ :: a -> Pair Char a
Datatypes> :t Pair ’a’ "Hello"
:t Pair ’a’ "Hello"
Pair ’a’ "Hello" :: Pair Char [Char]

So, by giving Pair two values, we have completely constructed a value of type
Pair. We can write functions involving pairs as:

pairFst (Pair x y) = x
pairSnd (Pair x y) = y

In this, we’ve used the pattern matching capabilities of Haskell to look at a pair
an extract values from it. In the definition of pairFst we take an entire Pair and
extract the first element; similarly for pairSnd. We’ll discuss pattern matching in
much more detail in Section 7.4.

Exercises
Exercise 4.4 Write a data type declaration for Triple, a type which contains three
elements, all of different types. Write functions tripleFst, tripleSnd and tripleThr
to extract respectively the first, second and third elements.

Exercise 4.5 Write a datatype Quadruple which holds four elements. However, the
first two elements must be the same type and the last two elements must be the same
type. Write a function firstTwo which returns a list containing the first two elements
and a function lastTwo which returns a list containing the last two elements. Write
type signatures for these functions

4.5. DATA TYPES 49

4.5.2 Multiple Constructors

We have seen an example of the data type with one constructor: Pair. It is also
possible (and extremely useful) to have multiple constructors.

Let us consider a simple function which searches through a list for an element
satisfying a given predicate and then returns the first element satisfying that predicate.
What should we do if none of the elements in the list satisfy the predicate? A few
options are listed below:

• Raise an error

• Loop indefinitely

• Write a check function

• Return the first element

• . . .

Raising an error is certainly an option (see Section 10.1 to see how to do this).
The problem is that it is difficult/impossible to recover from such errors. Looping
indefinitely is possible, but not terribly useful. We could write a sister function which
checks to see if the list contains an element satisfying a predicate and leave it up to the
user to always use this function first. We could return the first element, but this is very
ad-hoc and difficult to remember.

The fact that there is no basic option to solve this problem simply means we have to
think about it a little more. What are we trying to do? We’re trying to write a function
which might succeed and might not. Furthermore, if it does succeed, it returns some
sort of value. Let’s write a datatype:

data Maybe a = Nothing
| Just a

This is one of the most common datatypes in Haskell and is defined in the Prelude.
Here, we’re saying that there are two possible ways to create something of type

Maybe a. The first is to use the nullary constructor Nothing, which takes no ar-
guments (this is what “nullary” means). The second is to use the constructor Just,
together with a value of type a.

The Maybe type is useful in all sorts of circumstances. For instance, suppose
we want to write a function (like head) which returns the first element of a given
list. However, we don’t want the program to die if the given list is empty. We can
accomplish this with a function like:

firstElement :: [a] -> Maybe a
firstElement [] = Nothing
firstElement (x:xs) = Just x

50 CHAPTER 4. TYPE BASICS

The type signature here says that firstElement takes a list of as and produces
something with type Maybe a. In the first line of code, we match against the empty
list []. If this match succeeds (i.e., the list is, in fact, empty), we return Nothing. If
the first match fails, then we try to match against x:xs which must succeed. In this
case, we return Just x.

For our findElement function, we represent failure by the value Nothing and
success with value a by Just a. Our function might look something like this:

findElement :: (a -> Bool) -> [a] -> Maybe a
findElement p [] = Nothing
findElement p (x:xs) =

if p x then Just x
else findElement p xs

The first line here gives the type of the function. In this case, our first argument
is the predicate (and takes an element of type a and returns True if and only if the
element satisfies the predicate); the second argument is a list of as. Our return value
is maybe an a. That is, if the function succeeds, we will return Just a and if not,
Nothing.

Another useful datatype is the Either type, defined as:

data Either a b = Left a
| Right b

This is a way of expressing alternation. That is, something of type Either a b
is either a value of type a (using the Left constructor) or a value of type b (using the
Right constructor).

Exercises

Exercise 4.6 Write a datatype Tuple which can hold one, two, three or four elements,
depending on the constructor (that is, there should be four constructors, one for each
number of arguments). Also provide functions tuple1 through tuple4 which take a
tuple and return Just the value in that position, or Nothing if the number is invalid
(i.e., you ask for the tuple4 on a tuple holding only two elements).

Exercise 4.7 Based on our definition of Tuple from the previous exercise, write a
function which takes a Tuple and returns either the value (if it’s a one-tuple), a
Haskell-pair (i.e., (’a’,5)) if it’s a two-tuple, a Haskell-triple if it’s a three-tuple
or a Haskell-quadruple if it’s a four-tuple. You will need to use the Either type to
represent this.

4.5. DATA TYPES 51

4.5.3 Recursive Datatypes

We can also define recursive datatypes. These are datatypes whose definitions are
based on themselves. For instance, we could define a list datatype as:

data List a = Nil
| Cons a (List a)

In this definition, we have defined what it means to be of type List a. We say that a
list is either empty (Nil) or it’s the Cons of a value of type a and another value of type
List a. This is almost identical to the actual definition of the list datatype in Haskell,
except that uses special syntax where [] corresponds to Nil and : corresponds to
Cons. We can write our own length function for our lists as:

listLength Nil = 0
listLength (Cons x xs) = 1 + listLength xs

This function is slightly more complicated and uses recursion to calculate the
length of a List. The first line says that the length of an empty list (a Nil) is 0.
This much is obvious. The second line tells us how to calculate the length of a non-
empty list. A non-empty list must be of the form Cons x xs for some values of x
and xs. We know that xs is another list and we know that whatever the length of the
current list is, it’s the length of its tail (the value of xs) plus one (to account for x).
Thus, we apply the listLength function to xs and add one to the result. This gives
us the length of the entire list.

Exercises
Exercise 4.8 Write functions listHead, listTail, listFoldl and listFoldr
which are equivalent to their Prelude twins, but function on our List datatype. Don’t
worry about exceptional conditions on the first two.

4.5.4 Binary Trees

We can define datatypes that are more complicated that lists. Suppose we want to
define a structure that looks like a binary tree. A binary tree is a structure that has a
single root node; each node in the tree is either a “leaf” or a “branch.” If it’s a leaf, it
holds a value; if it’s a branch, it holds a value and a left child and a right child. Each of
these children is another node. We can define such a data type as:

data BinaryTree a
= Leaf a
| Branch (BinaryTree a) a (BinaryTree a)

In this datatype declaration we say that a BinaryTree of as is either a Leaf
which holds an a, or it’s a branch with a left child (which is a BinaryTree of as), a

52 CHAPTER 4. TYPE BASICS

node value (which is an a), and a right child (which is also a BinaryTree of as). It is
simple to modify the listLength function so that instead of calculating the length
of lists, it calculates the number of nodes in a BinaryTree. Can you figure out how?
We can call this function treeSize. The solution is given below:

treeSize (Leaf x) = 1
treeSize (Branch left x right) =
1 + treeSize left + treeSize right

Here, we say that the size of a leaf is 1 and the size of a branch is the size of its left
child, plus the size of its right child, plus one.

Exercises
Exercise 4.9 Write a function elementswhich returns the elements in a BinaryTree
in a bottom-up, left-to-right manner (i.e., the first element returned in the left-most leaf,
followed by its parent’s value, followed by the other child’s value, and so on). The re-
sult type should be a normal Haskell list.

Exercise 4.10 Write a fold function for BinaryTrees and rewrite elements in
terms of it (call the new one elements2).

4.5.5 Enumerated Sets

You can also use datatypes to define things like enumerated sets, for instance, a type
which can only have a constrained number of values. We could define a color type:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black

This would be sufficient to deal with simple colors. Suppose we were using this to
write a drawing program, we could then write a function to convert between a Color

and a RGB triple. We can write a colorToRGB function, as:

colorToRGB Red = (255,0,0)
colorToRGB Orange = (255,128,0)
colorToRGB Yellow = (255,255,0)
colorToRGB Green = (0,255,0)
colorToRGB Blue = (0,0,255)

4.6. CONTINUATION PASSING STYLE 53

colorToRGB Purple = (255,0,255)
colorToRGB White = (255,255,255)
colorToRGB Black = (0,0,0)

If we wanted also to allow the user to define his own custom colors, we could
change the Color datatype to something like:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black
| Custom Int Int Int -- R G B components

And add a final definition for colorToRGB:

colorToRGB (Custom r g b) = (r,g,b)

4.5.6 The Unit type

A final useful datatype defined in Haskell (from the Prelude) is the unit type. It’s
definition is:

data () = ()

The only true value of this type is (). This is essentially the same as a void type in
a langauge like C or Java and will be useful when we talk about IO in Chapter 5.

We’ll dwell much more on data types in Sections 7.4 and 8.3.

4.6 Continuation Passing Style

There is a style of functional programming called “Continuation Passing Style” (also
simply “CPS”). The idea behind CPS is to pass around as a function argument what to
do next. I will handwave through an example which is too complex to write out at this
point and then give a real example, though one with less motivation.

Consider the problem of parsing. The idea here is that we have a sequence of
tokens (words, letters, whatever) and we want to ascribe structure to them. The task
of converting a string of Java tokens to a Java abstract syntax tree is an example of a

54 CHAPTER 4. TYPE BASICS

parsing problem. So is the task of taking an English sentence and creating a parse tree
(though the latter is quite a bit harder).

Suppose we’re parsing something like C or Java where functions take arguments
in parentheses. But for simplicity, assume they are not separated by commas. That
is, a function call looks like myFunction(x y z). We want to convert this into
something like a pair containing first the string “myFunction” and then a list with three
string elements: “x”, “y” and “z”.

The general approach to solving this would be to write a function which parses
function calls like this one. First it would look for an identifier (“myFunction”), then
for an open parenthesis, then for zero or more identifiers, then for a close parenthesis.

One way to do this would be to have two functions:

parseFunction ::
[Token] -> Maybe ((String, [String]), [Token])

parseIdentifier ::
[Token] -> Maybe (String, [Token])

The idea would be that if we call parseFunction, if it doesn’t return Nothing,
then it returns the pair described earlier, together with whatever is left after parsing the
function. Similarly, parseIdentifierwill parse one of the arguments. If it returns
Nothing, then it’s not an argument; if it returns Just something, then that something
is the argument paired with the rest of the tokens.

What the parseFunction function would do is to parse an identifier. If this
fails, it fails itself. Otherwise, it continues and tries to parse a open parenthesis. If that
succeeds, it repeatedly calls parseIdentifier until that fails. It then tries to parse
a close parenthesis. If that succeeds, then it’s done. Otherwise, it fails.

There is, however, another way to think about this problem. The advantage to this
solution is that functions no longer need to return the remaining tokens (which tends to
get ugly). Instead of the above, we write functions:

parseFunction ::
[Token] -> ((String, [String]) -> [Token] -> a) ->
([Token] -> a) -> a

parseIdentifier ::
[Token] -> (String -> [Token] -> a) ->
([Token] -> a) -> a

Let’s consider parseIdentifier. This takes three arguments: a list of tokens
and two continuations. The first continuation is what to do when you succeed. The
second continuation is what to do if you fail. What parseIdentifier does, then,
is try to read an identifier. If this succeeds, it calls the first continuation with that
identifier and the remaining tokens as arguments. If reading the identifier fails, it calls
the second continuation with all the tokens.

4.6. CONTINUATION PASSING STYLE 55

Now consider parseFunction. Recall that it wants to read an identifier, an
open parenthesis, zero or more identifiers and a close parenthesis. Thus, the first thing
it does is call parseIdentifier. The first argument it gives is the list of tokens.
The first continuation (which is what parseIdentifier should do if it succeeds)
is in turn a function which will look for an open parenthesis, zero or more arguments
and a close parethesis. The second argument (the failure argument) is just going to be
the failure function given to parseFunction.

Now, we simply need to define this function which looks for an open parenthesis,
zero or more arguments and a close parethesis. This is easy. We write a function which
looks for the open parenthesis and then calls parseIdentifier with a success
continuation that looks for more identifiers, and a “failure” continuation which looks
for the close parenthesis (note that this failure doesn’t really mean failure – it just means
there are no more arguments left).

I realize this discussion has been quite abstract. I would willingly give code for all
this parsing, but it is perhaps too complex at the moment. Instead, consider the problem
of folding across a list. We can write a CPS fold as:

cfold’ f z [] = z
cfold’ f z (x:xs) = f x z (\y -> cfold’ f y xs)

In this code, cfold’ take a function f which takes three arguments, slightly dif-
ferent from the standard folds. The first is the current list element, x, the second is the
accumulated element, z, and the third is the continuation: basicially, what to do next.

We can write a wrapper function for cfold’ that will make it behave more like a
normal fold:

cfold f z l = cfold’ (\x t g -> f x (g t)) z l

We can test that this function behaves as we desire:

CPS> cfold (+) 0 [1,2,3,4]
10
CPS> cfold (:) [] [1,2,3]
[1,2,3]

One thing that’s nice about formulating cfold in terms of the helper function
cfold’ is that we can use the helper function directly. This enables us to change, for
instance, the evaluation order of the fold very easily:

CPS> cfold’ (\x t g -> (x : g t)) [] [1..10]
[1,2,3,4,5,6,7,8,9,10]
CPS> cfold’ (\x t g -> g (x : t)) [] [1..10]
[10,9,8,7,6,5,4,3,2,1]

56 CHAPTER 4. TYPE BASICS

The only difference between these calls to cfold’ is whether we call the continu-
ation before or after constructing the list. As it turns out, this slight difference changes
the behavior for being like foldr to being like foldl. We can evaluate both of these
calls as follows (let f be the folding function):

cfold’ (\x t g -> (x : g t)) [] [1,2,3]
==> cfold’ f [] [1,2,3]
==> f 1 [] (\y -> cfold’ f y [2,3])
==> 1 : ((\y -> cfold’ f y [2,3]) [])
==> 1 : (cfold’ f [] [2,3])
==> 1 : (f 2 [] (\y -> cfold’ f y [3]))
==> 1 : (2 : ((\y -> cfold’ f y [3]) []))
==> 1 : (2 : (cfold’ f [] [3]))
==> 1 : (2 : (f 3 [] (\y -> cfold’ f y [])))
==> 1 : (2 : (3 : (cfold’ f [] [])))
==> 1 : (2 : (3 : []))
==> [1,2,3]

cfold’ (\x t g -> g (x:t)) [] [1,2,3]
==> cfold’ f [] [1,2,3]
==> (\x t g -> g (x:t)) 1 [] (\y -> cfold’ f y [2,3])
==> (\g -> g [1]) (\y -> cfold’ f y [2,3])
==> (\y -> cfold’ f y [2,3]) [1]
==> cfold’ f [1] [2,3]
==> (\x t g -> g (x:t)) 2 [1] (\y -> cfold’ f y [3])
==> cfold’ f (2:[1]) [3]
==> cfold’ f [2,1] [3]
==> (\x t g -> g (x:t)) 3 [2,1] (\y -> cfold’ f y [])
==> cfold’ f (3:[2,1]) []
==> [3,2,1]

In general, continuation passing style is a very powerful abstraction, though it can
be difficult to master. We will revisit the topic more thoroughly later in the book.

Exercises

Exercise 4.11 Test whether the CPS-style fold mimicks either of foldr and foldl.
If not, where is the difference?

Exercise 4.12 Write map and filter using continuation passing style.

Chapter 5

Basic Input/Output

As we mentioned earlier, it is difficult to think of a good, clean way to integrate oper-
ations like input/output into a pure functional language. Before we give the solution,
let’s take a step back and think about the difficulties inherent in such a task.

Any IO library should provide a host of functions, containing (at a minimum) op-
erations like:

• print a string to the screen

• read a string from a keyboard

• write data to a file

• read data from a file

There are two issues here. Let’s first consider the initial two examples and think
about what their types should be. Certainly the first operation (I hesitate to call it a
“function”) should take a String argument and produce something, but what should it
produce? It could produce a unit (), since there is essentially no return value from
printing a string. The second operation, similarly, should return a String, but it doesn’t
seem to require an argument.

We want both of these operations to be functions, but they are by definition not
functions. The item that reads a string from the keyboard cannot be a function, as it
will not return the same String every time. And if the first function simply returns ()
every time, there should be no problem with replacing it with a function f = (),
due to referential transparency. But clearly this does not have the desired effect.

5.1 The RealWorld Solution

In a sense, the reason that these items are not functions is that they interact with the
“real world.” Their values depend directly on the real world. Supposing we had a type
RealWorld, we might write these functions as having type:

57

58 CHAPTER 5. BASIC INPUT/OUTPUT

printAString :: RealWorld -> String -> RealWorld
readAString :: RealWorld -> (RealWorld, String)

That is, printAString takes a current state of the world and a string to print;
it then modifies the state of the world in such a way that the string is now printed and
returns this new value. Similarly, readAString takes a current state of the world
and returns a new state of the world, paired with the String that was typed.

This would be a possible way to do IO, though it is more than somewhat unweildy.
In this style (assuming an initial RealWorld state were an argument to main), our
“Name.hs” program from Section 3.8 would look something like:

main rW =
let rW’ = printAString rW "Please enter your name: "

(rW’’,name) = readAString rW’
in printAString rW’’

("Hello, " ++ name ++ ", how are you?")

This is not only hard to read, but prone to error, if you accidentally use the wrong
version of the RealWorld. It also doesn’t model the fact that the program below makes
no sense:

main rW =
let rW’ = printAString rW "Please enter your name: "

(rW’’,name) = readAString rW’
in printAString rW’ -- OOPS!

("Hello, " ++ name ++ ", how are you?")

In this program, the reference to rW’’ on the last line has been changed to a ref-
erence to rW’. It is completely unclear what this program should do. Clearly, it must
read a string in order to have a value for name to be printed. But that means that the
RealWorld has been updated. However, then we try to ignore this update by using an
“old version” of the RealWorld. There is clearly something wrong happening here.

Suffice it to say that doing IO operations in a pure lazy functional language is not
trivial.

5.2 Actions

The breakthrough for solving this problem came when Phil Wadler realized that mon-
ads would be a good way to think about IO computations. In fact, monads are able to
express much more than just the simple operations described above; we can use them
to express a variety of constructions like concurrence, exceptions, IO, non-determinism
and much more. Moreover, there is nothing special about them; they can be defined
within Haskell with no special handling from the compiler (though compilers often
choose to optimize monadic operations).

5.2. ACTIONS 59

As pointed out before, we cannot think of things like “print a string to the screen” or
“read data from a file” as functions, since they are not (in the pure mathematical sense).
Therefore, we give them another name: actions. Not only do we give them a special
name, we give them a special type. One particularly useful action is putStrLn, which
prints a string to the screen. This action has type:

putStrLn :: String -> IO ()

As expected, putStrLn takes a string argument. What it returns is of type IO
(). This means that this function is actually an action (that is what the IO means).
Furthermore, when this action is evaluated (or “run”) , the result will have type ().

NOTE Actually, this type means that putStrLn is an action within
the IO monad, but we will gloss over this for now.

You can probably already guess the type of getLine:

getLine :: IO String

This means that getLine is an IO action that, when run, will have type String.
The question immediately arises: “how do you ‘run’ an action?”. This is something

that is left up to the compiler. You cannot actually run an action yourself; instead, a
program is, itself, a single action that is run when the compiled program is executed.
Thus, the compiler requires that the main function have type IO (), which means that
it is an IO action that returns nothing. The compiled code then executes this action.

However, while you are not allowed to run actions yourself, you are allowed to
combine actions. In fact, we have already seen one way to do this using the do
notation (how to really do this will be revealed in Chapter 9). Let’s consider the original
name program:

main = do
hSetBuffering stdin LineBuffering
putStrLn "Please enter your name: "
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

We can consider the do notation as a way to combine a sequence of actions. More-
over, the <- notation is a way to get the value out of an action. So, in this program,
we’re sequencing four actions: setting buffering, a putStrLn, a getLine and an-
other putStrLn. The putStrLn action has type String → IO (), so we provide it a
String, so the fully applied action has type IO (). This is something that we are allowed
to execute.

The getLine action has type IO String, so it is okay to execute it directly. How-
ever, in order to get the value out of the action, we write name <- getLine, which
basically means “run getLine, and put the results in the variable called name.”

60 CHAPTER 5. BASIC INPUT/OUTPUT

Normal Haskell constructions like if/then/else and case/of can be used within the
do notation, but you need to be somewhat careful. For instance, in our “guess the
number” program, we have:

do ...
if (read guess) < num
then do putStrLn "Too low!"

doGuessing num
else if read guess > num

then do putStrLn "Too high!"
doGuessing num

else do putStrLn "You Win!"

If we think about how the if/then/else construction works, it essentially takes three
arguments: the condition, the “then” branch, and the “else” branch. The condition
needs to have type Bool, and the two branches can have any type, provided that they
have the same type. The type of the entire if/then/else construction is then the type of
the two branches.

In the outermost comparison, we have (read guess) < num as the condition.
This clearly has the correct type. Let’s just consider the “then” branch. The code here
is:

do putStrLn "Too low!"
doGuessing num

Here, we are sequencing two actions: putStrLn and doGuessing. The first
has type IO (), which is fine. The second also has type IO (), which is fine. The type
result of the entire computation is precisely the type of the final computation. Thus, the
type of the “then” branch is also IO (). A similar argument shows that the type of the
“else” branch is also IO (). This means the type of the entire if/then/else construction
is IO (), which is just what we want.

NOTE In this code, the last line is “else do putStrLn "You
Win!"”. This is somewhat overly verbose. In fact, “else putStrLn
"You Win!"” would have been sufficient, since do is only necessary to
sequence actions. Since we have only one action here, it is superfluous.

It is incorrect to think to yourself “Well, I already started a do block; I don’t need
another one,” and hence write something like:

do if (read guess) < num
then putStrLn "Too low!"

doGuessing num
else ...

5.2. ACTIONS 61

Here, since we didn’t repeat the do, the compiler doesn’t know that the putStrLn
and doGuessing calls are supposed to be sequenced, and the compiler will think
you’re trying to call putStrLnwith three arguments: the string, the function doGuessing
and the integer num. It will certainly complain (though the error may be somewhat dif-
ficult to comprehend at this point).

We can write the same doGuessing function using a case statement. To do this,
we first introduce the Prelude function compare, which takes two values of the same
type (in the Ord class) and returns one of GT, LT, EQ, depending on whether the first
is greater than, less than or equal to the second.

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
LT -> do putStrLn "Too low!"

doGuessing num
GT -> do putStrLn "Too high!"

doGuessing num
EQ -> putStrLn "You Win!"

Here, again, the dos after the ->s are necessary on the first two options, because
we are sequencing actions.

If you’re used to programming in an imperative language like C or Java, you might
think that return will exit you from the current function. This is not so in Haskell.
In Haskell, return simply takes a normal value (for instance, one of type IO Int) and
makes it into an action that returns the given value (for instance, the value of type Int).
In particular, in an imperative language, you might write this function as:

void doGuessing(int num) {
print "Enter your guess:";
int guess = atoi(readLine());
if (guess == num) {
print "You win!";
return ();

}

// we won’t get here if guess == num
if (guess < num) {
print "Too low!";
doGuessing(num);

} else {
print "Too high!";
doGuessing(num);

}
}

62 CHAPTER 5. BASIC INPUT/OUTPUT

Here, because we have the return () in the first if match, we expect the code
to exit there (and in mode imperative languages, it does). However, the equivalent code
in Haskell, which might look something like:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
EQ -> do putStrLn "You win!"

return ()

-- we don’t expect to get here unless guess == num
if (read guess < num)
then do print "Too low!";

doGuessing
else do print "Too high!";

doGuessing

will not behave as you expect. First of all, if you guess correctly, it will first print “You
win!,” but it won’t exit, and it will check whether guess is less than num. Of course
it is not, so the else branch is taken, and it will print “Too high!” and then ask you to
guess again.

On the other hand, if you guess incorrectly, it will try to evaluate the case statement
and get either LT or GT as the result of the compare. In either case, it won’t have a
pattern that matches, and the program will fail immediately with an exception.

Exercises
Exercise 5.1 Write a program that asks the user for his or her name. If the name is
one of Simon, John or Phil, tell the user that you think Haskell is a great programming
language. If the name is Koen, tell them that you think debugging Haskell is fun (Koen
Classen is one of the people who works on Haskell debugging); otherwise, tell the user
that you don’t know who he or she is.
Write two different versions of this program, one using if statements, the other using a
case statement.

5.3 The IO Library

The IO Library (available by importing the IO module) contains many definitions, the
most common of which are listed below:

data IOMode = ReadMode | WriteMode
| AppendMode | ReadWriteMode

openFile :: FilePath -> IOMode -> IO Handle

5.3. THE IO LIBRARY 63

hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

hGetChar :: Handle -> IO Char
hGetLine :: Handle -> IO String
hGetContents :: Handle -> IO String

getChar :: IO Char
getLine :: IO String
getContents :: IO String

hPutChar :: Handle -> Char -> IO ()
hPutStr :: Handle -> String -> IO ()
hPutStrLn :: Handle -> String -> IO ()

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

bracket ::
IO a -> (a -> IO b) -> (a -> IO c) -> IO c

NOTE The type FilePath is a type synonym for String. That is,
there is no difference between FilePath and String. So, for instance,
the readFile function takes a String (the file to read) and returns an
action that, when run, produces the contents of that file. See Section 8.1
for more about type synonyms.

Most of these functions are self-explanatory. The openFile and hClose func-
tions open and close a file, respectively, using the IOMode argument as the mode for
opening the file. hIsEOF tests for end-of file. hGetChar and hGetLine read
a character or line (respectively) from a file. hGetContents reads the entire file.
The getChar, getLine and getContents variants read from standard input.
hPutChar prints a character to a file; hPutStr prints a string; and hPutStrLn
prints a string with a newline character at the end. The variants without the h prefix
work on standard output. The readFile and writeFile functions read an entire
file without having to open it first.

The bracket function is used to perform actions safely. Consider a function that
opens a file, writes a character to it, and then closes the file. When writing such a
function, one needs to be careful to ensure that, if there were an error at some point,
the file is still successfully closed. The bracket function makes this easy. It takes

64 CHAPTER 5. BASIC INPUT/OUTPUT

three arguments: The first is the action to perform at the beginning. The second is the
action to perform at the end, regardless of whether there’s an error or not. The third is
the action to perform in the middle, which might result in an error. For instance, our
character-writing function might look like:

writeChar :: FilePath -> Char -> IO ()
writeChar fp c =

bracket
(openFile fp ReadMode)
hClose
(\h -> hPutChar h c)

This will open the file, write the character and then close the file. However, if
writing the character fails, hClose will still be executed, and the exception will be
reraised afterwards. That way, you don’t need to worry too much about catching the
exceptions and about closing all of your handles.

5.4 A File Reading Program

We can write a simple program that allows a user to read and write files. The interface
is admittedly poor, and it does not catch all errors (try reading a non-existant file).
Nevertheless, it should give a fairly complete example of how to use IO. Enter the
following code into “FileRead.hs,” and compile/run:

module Main
where

import IO

main = do
hSetBuffering stdin LineBuffering
doLoop

doLoop = do
putStrLn "Enter a command rFN wFN or q to quit:"
command <- getLine
case command of
’q’:_ -> return ()
’r’:filename -> do putStrLn ("Reading " ++ filename)

doRead filename
doLoop

’w’:filename -> do putStrLn ("Writing " ++ filename)
doWrite filename
doLoop

_ -> doLoop

5.4. A FILE READING PROGRAM 65

doRead filename =
bracket (openFile filename ReadMode) hClose

(\h -> do contents <- hGetContents h
putStrLn "The first 100 chars:"
putStrLn (take 100 contents))

doWrite filename = do
putStrLn "Enter text to go into the file:"
contents <- getLine
bracket (openFile filename WriteMode) hClose

(\h -> hPutStrLn h contents)

What does this program do? First, it issues a short string of instructions and reads
a command. It then performs a case switch on the command and checks first to see if
the first character is a ‘q.’ If it is, it returns a value of unit type.

NOTE The return function is a function that takes a value of type
a and returns an action of type IO a. Thus, the type of return () is
IO ().

If the first character of the command wasn’t a ‘q,’ the program checks to see if it
was an ’r’ followed by some string that is bound to the variable filename. It then
tells you that it’s reading the file, does the read and runs doLoop again. The check
for ‘w’ is nearly identical. Otherwise, it matches , the wildcard character, and loops
to doLoop.

The doRead function uses the bracket function to make sure there are no prob-
lems reading the file. It opens a file in ReadMode, reads its contents and prints the first
100 characters (the take function takes an integer n and a list and returns the first n
elements of the list).

The doWrite function asks for some text, reads it from the keyboard, and then
writes it to the file specified.

NOTE Both doRead and doWrite could have been made simpler
by using readFile and writeFile, but they were written in the ex-
tended fashion to show how the more complex functions are used.

The only major problem with this program is that it will die if you try to read a file
that doesn’t already exists or if you specify some bad filename like *\ˆ# @. You may
think that the calls to bracket in doRead and doWrite should take care of this,
but they don’t. They only catch exceptions within the main body, not within the startup
or shutdown functions (openFile and hClose, in these cases). We would need to
catch exceptions raised by openFile, in order to make this complete. We will do this
when we talk about exceptions in more detail in Section 10.1.

66 CHAPTER 5. BASIC INPUT/OUTPUT

Exercises
Exercise 5.2 Write a program that first asks whether the user wants to read from a file,
write to a file or quit. If the user responds quit, the program should exit. If he responds
read, the program should ask him for a file name and print that file to the screen (if the
file doesn’t exist, the program may crash). If he responds write, it should ask him for a
file name and then ask him for text to write to the file, with “.” signaling completion.
All but the “.” should be written to the file.
For example, running this program might produce:

Do you want to [read] a file, [write] a file or [quit]?
read
Enter a file name to read:
foo
...contents of foo...
Do you want to [read] a file, [write] a file or [quit]?
write
Enter a file name to write:
foo
Enter text (dot on a line by itself to end):
this is some
text for
foo
.
Do you want to [read] a file, [write] a file or [quit]?
read
Enter a file name to read:
foo
this is some
text for
foo
Do you want to [read] a file, [write] a file or [quit]?
read
Enter a file name to read:
foof
Sorry, that file does not exist.
Do you want to [read] a file, [write] a file or [quit]?
blech
I don’t understand the command blech.
Do you want to [read] a file, [write] a file or [quit]?
quit
Goodbye!

Chapter 6

Modules

In Haskell, program subcomponents are divided into modules. Each module sits in its
own file and the name of the module should match the name of the file (without the
“.hs” extension, of course), if you wish to ever use that module in a larger program.

For instance, suppose I am writing a game of poker. I may wish to have a separate
module called “Cards” to handle the generation of cards, the shuffling and the dealing
functions, and then use this “Cards” module in my “Poker” modules. That way, if I
ever go back and want to write a blackjack program, I don’t have to rewrite all the code
for the cards; I can simply import the old “Cards” module.

6.1 Exports

Suppose as suggested we are writing a cards module. I have left out the implementation
details, but suppose the skeleton of our module looks something like this:

module Cards
where

data Card = ...
data Deck = ...

newDeck :: ... -> Deck
newDeck = ...

shuffle :: ... -> Deck -> Deck
shuffle = ...

-- ’deal deck n’ deals ’n’ cards from ’deck’
deal :: Deck -> Int -> [Card]
deal deck n = dealHelper deck n []

67

68 CHAPTER 6. MODULES

dealHelper = ...

In this code, the function deal calls a helper function dealHelper. The im-
plementation of this helper function is very dependent on the exact data structures you
used for Card and Deck so we don’t want other people to be able to call this function.
In order to do this, we create an export list, which we insert just after the module name
declaration:

module Cards (Card(),
Deck(),
newDeck,
shuffle,
deal

)
where

...

Here, we have specified exactly what functions the module exports, so people who
use this module won’t be able to access our dealHelper function. The () after
Card and Deck specify that we are exporting the type but none of the constructors.
For instance if our definition of Card were:

data Card = Card Suit Face
data Suit = Hearts

| Spades
| Diamonds
| Clubs

data Face = Jack
| Queen
| King
| Ace
| Number Int

Then users of our module would be able to use things of type Card, but wouldn’t
be able to construct their own Cards and wouldn’t be able to extract any of the suit/face
information stored in them.

If we wanted users of our module to be able to access all of this information, we
would have to specify it in the export list:

module Cards (Card(Card),
Suit(Hearts,Spades,Diamonds,Clubs),
Face(Jack,Queen,King,Ace,Number),
...

)

6.2. IMPORTS 69

where

...

This can get frustrating if you’re exporting datatypes with many constructors, so if
you want to export them all, you can simply write (..), as in:

module Cards (Card(..),
Suit(..),
Face(..),
...

)
where

...

And this will automatically export all the constructors.

6.2 Imports

There are a few idiosyncracies in the module import system, but as long as you stay
away from the corner cases, you should be fine. Suppose, as before, you wrote a
module called “Cards” which you saved in the file “Cards.hs”. You are now writing
your poker module and you want to import all the definitions from the “Cards” module.
To do this, all you need to do is write:

module Poker
where

import Cards

This will enable to you use any of the functions, types and constructors exported
by the module “Cards”. You may refer to them simply by their name in the “Cards”
module (as, for instance, newDeck), or you may refer to them explicitely as imported
from “Cards” (as, for instance, Cards.newDeck). It may be the case that two module
export functions or types of the same name. In these cases, you can import one of
the modules qualified which means that you would no longer be able to simply use
the newDeck format but must use the longer Cards.newDeck format, to remove
ambiguity. If you wanted to import “Cards” in this qualified form, you would write:

import qualified Cards

Another way to avoid problems with overlapping function definitions is to import
only certain functions from modules. Suppose we knew the only function from “Cards”
that we wanted was newDeck, we could import only this function by writing:

70 CHAPTER 6. MODULES

import Cards (newDeck)

On the other hand, suppose we knew that that the deal function overlapped with
another module, but that we didn’t need the “Cards” version of that function. We could
hide the definition of deal and import everything else by writing:

import Cards hiding (deal)

Finally, suppose we want to import “Cards” as a qualified module, but don’t want
to have to type Cards. out all the time and would rather just type, for instance, C. –
we could do this using the as keyword:

import qualified Cards as C

These options can be mixed and matched – you can give explicit import lists on
qualified/as imports, for instance.

6.3 Hierarchical Imports

Though technically not part of the Haskell 98 standard, most Haskell compilers support
hierarchical imports. This was designed to get rid of clutter in the directories in which
modules are stored. Hierarchical imports allow you to specify (to a certain degree)
where in the directory structure a module exists. For instance, if you have a “haskell”
directory on your computer and this directory is in your compiler’s path (see your
compiler notes for how to set this; in GHC it’s “-i”, in Hugs it’s “-P”), then you can
specify module locations in subdirectories to that directory.

Suppose instead of saving the “Cards” module in your general haskell directory,
you created a directory specifically for it called “Cards”. The full path of the Cards.hs
file is then haskell/Cards/Cards.hs (or, for Windows haskell\Cards\Cards.hs).
If you then change the name of the Cards module to “Cards.Cards”, as in:

module Cards.Cards(...)
where

...

You could them import it in any module, regardless of this module’s directory, as:

import Cards.Cards

If you start importing these module qualified, I highly recommend using the as
keyword to shorten the names, so you can write:

6.4. LITERATE VERSUS NON-LITERATE 71

import qualified Cards.Cards as Cards

... Cards.newDeck ...

instead of:

import qualified Cards.Cards

... Cards.Cards.newDeck ...

which tends to get ugly.

6.4 Literate Versus Non-Literate

The idea of literate programming is a relatively simple one, but took quite a while to
become popularized. When we think about programming, we think about the code
being the default mode of entry and comments being secondary. That is, we write code
without any special annotation, but comments are annotated with either -- or {- ...
-}. Literate programming swaps these preconceptions.

There are two types of literate programs in Haskell; the first uses so-called Bird-
scripts and the second uses LATEX-style markup. Each will be discussed individually.
No matter which you use, literate scripts must have the extension lhs instead of hs to
tell the compiler that the program is written in a literate style.

6.4.1 Bird-scripts

In a Bird-style literate program, comments are default and code is introduced with a
leading greater-than sign (“>”). Everything else remains the same. For example, our
Hello World program would be written in Bird-style as:

This is a simple (literate!) Hello World program.

> module Main
> where

All our main function does is print a string:

> main = putStrLn "Hello World"

Note that the spaces between the lines of code and the “comments” are necessary
(your compiler will probably complain if you are missing them). When compiled or
loaded in an interpreter, this program will have the exact same properties as the non-
literate version from Section 3.4.

72 CHAPTER 6. MODULES

6.4.2 LaTeX-scripts

LATEX is a text-markup language very popular in the academic community for publish-
ing. If you are unfamiliar with LATEX, you may not find this section terribly useful.

Again, a literate Hello World program written in LATEX-style would look like:

This is another simple (literate!) Hello World program.

\begin{code}
module Main

where
\end{code}

All our main function does is print a string:

\begin{code}
main = putStrLn "Hello World"
\end{code}

In LATEX-style scripts, the blank lines are not necessary.

Chapter 7

Advanced Features

Discussion

7.1 Sections and Infix Operators

We’ve already seen how to double the values of elements in a list using map:

Prelude> map (\x -> x*2) [1,2,3,4]
[2,4,6,8]

However, there is a more concise way to write this:

Prelude> map (*2) [1,2,3,4]
[2,4,6,8]

This type of thing can be done for any infix function:

Prelude> map (+5) [1,2,3,4]
[6,7,8,9]
Prelude> map (/2) [1,2,3,4]
[0.5,1.0,1.5,2.0]
Prelude> map (2/) [1,2,3,4]
[2.0,1.0,0.666667,0.5]

You might be tempted to try to subtract values from elements in a list by mapping
-2 across a list. This won’t work, though, because while the + in +2 is parsed as
the standard plus operator (as there is no ambiguity), the - in -2 is interpreted as the
unary minus, not the binary minus. Thus -2 here is the number −2, not the function
λx.x − 2.

In general, these are called sections. For binary infix operators (like +), we can
cause the function to become prefix by enclosing it in paretheses. For example:

73

74 CHAPTER 7. ADVANCED FEATURES

Prelude> (+) 5 3
8
Prelude> (-) 5 3
2

Additionally, we can provide either of its argument to make a section. For example:

Prelude> (+5) 3
8
Prelude> (/3) 6
2.0
Prelude> (3/) 6
0.5

Non-infix functions can be made infix by enclosing them in backquotes (“’̀’). For
example:

Prelude> (+2) ‘map‘ [1..10]
[3,4,5,6,7,8,9,10,11,12]

7.2 Local Declarations

Recall back from Section 3.5, there are many computations which require using the
result of the same computation in multiple places in a function. There, we considered
the function for computing the roots of a quadratic polynomial:

roots a b c =
((-b + sqrt(b*b - 4*a*c)) / (2*a),
(-b - sqrt(b*b - 4*a*c)) / (2*a))

In addition to the let bindings introduced there, we can do this using a where clause.
where clauses come immediately after function definitions and introduce a new level
of layout (see Section 7.11). We write this as:

roots a b c =
((-b + det) / (2*a), (-b - det) / (2*a))
where det = sqrt(b*b-4*a*c)

Any values defined in a where clause shadow any other values with the same name.
For instance, if we had the following code block:

7.2. LOCAL DECLARATIONS 75

det = "Hello World"

roots a b c =
((-b + det) / (2*a), (-b - det) / (2*a))
where det = sqrt(b*b-4*a*c)

f _ = det

The value of roots doesn’t notice the top-level declaration of det, since it is
shadowed by the local definition (the fact that the types don’t match doesn’t matter
either). Furthermore, since f cannot “see inside” of roots, the only thing it knows
about det is what is available at the top level, which is the string “Hello World.” Thus,
f is a function which takes any argument to that string.

Where clauses can contain any number of subexpressions, but they must be aligned
for layout. For instance, we could also pull out the 2*a computation and get the
following code:

roots a b c =
((-b + det) / (a2), (-b - det) / (a2))
where det = sqrt(b*b-4*a*c)

a2 = 2*a

Sub-expressions in where clauses must come after function definitions. Some-
times it is more convenient to put the local definitions before the actual expression
of the function. This can be done by using let/in clauses. We have already seen let
clauses; where clauses are virtually identical to their let clause cousins except for their
placement. The same roots function can be written using let as:

roots a b c =
let det = sqrt (b*b - 4*a*c)

a2 = 2*a
in ((-b + det) / a2, (-b - det) / a2)

Using a where clause, it looks like:

roots a b c = ((-b + det) / a2, (-b - det) / a2)
where
det = sqrt (b*b - 4*a*c)
a2 = 2*a

These two types of clauses can be mixed (i.e., you can write a function which has
both a let cause and a where clause). This is strongly advised against, as it tends to
make code difficult to read. However, if you choose to do it, values in the let clause
shadow those in the where clause. So if you define the function:

76 CHAPTER 7. ADVANCED FEATURES

f x =
let y = x+1
in y
where y = x+2

The value of f 5 is 6, not 7. Of course, I plead with you to never ever write
code that looks like this. No one should have to remember this rule and by shadowing
where-defined values in a let clause only makes your code difficult to understand.

In general, whether you should use let clauses or where clauses is largely a matter
of personal preference. Usually, the names you give to the subexpressions should be
sufficiently expressive that without reading their definitions any reader of your code
should be able to figure out what they do. In this case, where clauses are probably
more desirable because they allow the reader to see immediately what a function does.
However, in real life, values are often given cryptic names. In which case let clauses
may be better. Either is probably okay, though I think where clauses are more common.

7.3 Partial Application

Partial application is when you take a function which takes n arguments and you supply
it with < n of them. When discussing sections in Section 7.1, we saw a form of
“partial application” in which functions like + were partially applied. For instance, in
the expression map (+1) [1,2,3], the section (+1) is a partial application of +.
This is because + really takes two arguments, but we’ve only given it one.

Partial application is very common in function definitions and sometimes goes by
the name “eta reduction”. For instance, suppose we are writting a function lcaseStringeta reduction
which converts a whole string into lower case. We could write this as:

lcaseString s = map toLower s

Here, there is no partial application (though you could argue that applying no argu-
ments to toLower could be considered partial application). However, we notice that
the application of s occurs at the end of both lcaseString and of map toLower.
In fact, we can remove it by performing eta reduction, to get:

lcaseString = map toLower

Now, we have a partial application of map: it expects a function and a list, but
we’ve only given it the function.

This all is related to type type of map, which is (a → b) → ([a] → [b]), when
parentheses are all included. In our case, toLower is of type Char → Char. Thus, if
we supply this function to map, we get a function of type [Char] → [Char], as desired.

Now, consider the task of converting a string to lowercase and remove all non letter
characters. We might write this as:

7.3. PARTIAL APPLICATION 77

lcaseLetters s = map toLower (filter isAlpha s)

But note that we can actually write this in terms of function composition:

lcaseLetters s = (map toLower . filter isAlpha) s

And again, we’re left with an eta reducible function:

lcaseLetters = map toLower . filter isAlpha

Writing functions in this style is very common among advanced Haskell users. In
fact it has a name: point-free programming (not to be confused with pointless program- point-free programming
ming). It is call point free because in the original definition of lcaseLetters, we
can think of the value s as a point on which the function is operating. By removing the
point from the function definition, we have a point-free function.

A function similar to (.) is ($). Whereas (.) is function composition, ($) is $

function application. The definition of ($) from the Prelude is very simple: function application

f $ x = f x

However, this function is given very low fixity, which means that it can be used to
replace parentheses. For instance, we might write a function:

foo x y = bar y (baz (fluff (ork x)))

However, using the function application function, we can rewrite this as:

foo x y = bar y $ baz $ fluff $ ork x

This moderately resembles the function composition syntax. The ($) function is
also useful when combined with other infix functions. For instance, we cannot write:

Prelude> putStrLn "5+3=" ++ show (5+3)

because this is interpreted as (putStrLn "5+3=") ++ (show (5+3)), which
makes no sense. However, we can fix this by writing instead:

Prelude> putStrLn $ "5+3=" ++ show (5+3)

Which works fine.
Consider now the task of extracting from a list of tuples all the ones whose first

component is greater than zero. One way to write this would be:

78 CHAPTER 7. ADVANCED FEATURES

fstGt0 l = filter (\ (a,b) -> a>0) l

We can first apply eta reduction to the whole function, yielding:

fstGt0 = filter (\ (a,b) -> a>0)

Now, we can rewrite the lambda function to use the fst function instead of the
pattern matching:

fstGt0 = filter (\x -> fst x > 0)

Now, we can use function composition between fst and > to get:

fstGt0 = filter (\x -> ((>0) . fst) x)

And finally we can eta reduce:

fstGt0 = filter ((>0).fst)

This definition is simultaneously shorter and easier to understand than the original.
We can clearly see exactly what it is doing: we’re filtering a list by checking whether
something is greater than zero. What are we checking? The fst element.

While converting to point free style often results in clearer code, this is of course
not always the case. For instance, converting the following map to point free style
yields something nearly uninterpretable:

foo = map (\x -> sqrt (3+4*(xˆ2)))
foo = map (sqrt . (3+) . (4*) . (ˆ2))

There are a handful of combinators defined in the Prelude which are useful for point
free programming:

• uncurry takes a function of type a → b → c and converts it into a function of
type (a, b) → c. This is useful, for example, when mapping across a list of pairs:

Prelude> map (uncurry (*)) [(1,2),(3,4),(5,6)]
[2,12,30]

• curry is the opposite of uncurry and takes a function of type (a, b) → c and
produces a function of type a → b → c.

• flip reverse the order of arguments to a function. That is, it takes a function of
type a → b → c and produces a function of type b → a → c. For instance, we
can sort a list in reverse order by using flip compare:

7.3. PARTIAL APPLICATION 79

Prelude> List.sortBy compare [5,1,8,3]
[1,3,5,8]
Prelude> List.sortBy (flip compare) [5,1,8,3]
[8,5,3,1]

This is the same as saying:

Prelude> List.sortBy (\a b -> compare b a) [5,1,8,3]
[8,5,3,1]

only shorter.

Of course, not all functions can be written in point free style. For instance:

square x = x*x

Cannot be written in point free style, without some other combinators. For instance,
if we can define other functions, we can write:

pair x = (x,x)
square = uncurry (*) . pair

But in this case, this is not terribly useful.

Exercises

Exercise 7.1 Convert the following functions into point-free style, if possible.

func1 x l = map (\y -> y*x) l

func2 f g l = filter f (map g l)

func3 f l = l ++ map f l

func4 l = map (\y -> y+2)
(filter (\z -> z ‘elem‘ [1..10])

(5:l))

func5 f l = foldr (\x y -> f (y,x)) 0 l

80 CHAPTER 7. ADVANCED FEATURES

7.4 Pattern Matching

Pattern matching is one of the most powerful features of Haskell (and most functional
programming languages). It is most commonly used in conjunction with case expres-
sions, which we have already seen in Section 3.5. Let’s return to our Color example
from Section 4.5. I’ll repeat the definition we already had for the datatype:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black
| Custom Int Int Int -- R G B components
deriving (Show,Eq)

We then want to write a function that will convert between something of type Color

and a triple of Ints, which correspond to the RGB values, respectively. Specifically, if
we see a Color which is Red, we want to return (255,0,0), since this is the RGB
value for red. So we write that (remember that piecewise function definitions are just
case statements):

colorToRGB Red = (255,0,0)

If we see a Color which is Orange, we want to return (255,128,0); and if we
see Yellow, we want to return (255,255,0), and so on. Finally, if we see a custom
color, which is comprised of three components, we want to make a triple out of these,
so we write:

colorToRGB Orange = (255,128,0)
colorToRGB Yellow = (255,255,0)
colorToRGB Green = (0,255,0)
colorToRGB Blue = (0,0,255)
colorToRGB Purple = (255,0,255)
colorToRGB White = (255,255,255)
colorToRGB Black = (0,0,0)
colorToRGB (Custom r g b) = (r,g,b)

Then, in our interpreter, if we type:

Color> colorToRGB Yellow
(255,255,0)

7.4. PATTERN MATCHING 81

What is happening is this: we create a value, call it x, which has value Red. We
then apply this to colorToRGB. We check to see if we can “match” x against Red.
This match fails because according to the definition of Eq Color, Red is not equal
to Yellow. We continue down the definitions of colorToRGB and try to match
Yellow against Orange. This fails, too. We the try to match Yellow against
Yellow, which succeeds, so we use this function definition, which simply returns
the value (255,255,0), as expected.

Suppose instead, we used a custom color:

Color> colorToRGB (Custom 50 200 100)
(50,200,100)

We apply the same matching process, failing on all values from Red to Black.
We then get to try to match Custom 50 200 100 against Custom r g b. We
can see that the Custom part matches, so then we go see if the subelements match. In
the matching, the variables r, g and b are essentially wild cards, so there is no trouble
matching r with 50, g with 200 and b with 100. As a “side-effect” of this matching, r
gets the value 50, g gets the value 200 and b gets the value 100. So the entire match
succeeded and we look at the definition of this part of the function and bundle up the
triple using the matched values of r, g and b.

We can also write a function to check to see if a Color is a custom color or not:

isCustomColor (Custom _ _ _) = True
isCustomColor _ = False

When we apply a value to isCustomColor it tries to match that value against
Custom . This match will succeed if the value is Custom x y z for any x,
y and z. The (underscore) character is a “wildcard” and will match anything, but will
not do the binding that would happen if you put a variable name there. If this match
succeeds, the function returns True; however, if this match fails, it goes on to the next
line, which will match anything and then return False.

For some reason we might want to define a function which tells us whether a given
color is “bright” or not, where my definition of “bright” is that one of its RGB compo-
nents is equal to 255 (admittedly and arbitrary definition, but it’s simply an example).
We could define this function as:

isBright = isBright’ . colorToRGB
where isBright’ (255,_,_) = True

isBright’ (_,255,_) = True
isBright’ (_,_,255) = True
isBright’ _ = False

Let’s dwell on this definition for a second. The isBright function is the compo-
sition of our previously defined function colorToRGB and a helper function isBright’,
which tells us if a given RGB value is bright or not. We could replace the first line here

82 CHAPTER 7. ADVANCED FEATURES

with isBright c = isBright’ (colorToRGB c) but there is no need to ex-
plicitly write the parameter here, so we don’t. Again, this function composition style
of programming takes some getting used to, so I will try to use it frequently in this
tutorial.

The isBright’ helper function takes the RGB triple produced by colorToRGB.
It first tries to match it against (255, ,) which succeeds if the value has 255 in
its first position. If this match succeeds, isBright’ returns True and so does
isBright. The second and third line of definition check for 255 in the second and
third position in the triple, respectively. The fourth line, the fallthrough, matches ev-
erything else and reports it as not bright.

We might want to also write a function to convert between RGB triples and Colors.
We could simple stick everything in a Custom constructor, but this would defeat the
purpose; we want to use the Custom slot only for values which don’t match the pre-
defined colors. However, we don’t want to allow the user to construct custom colors
like (600,-40,99) since these are invalid RGB values. We could throw an error if such
a value is given, but this can be difficult to deal with. Instead, we use the Maybe
datatype. This is defined (in the Prelude) as:

data Maybe a = Nothing
| Just a

The way we use this is as follows: our rgbToColor function returns a value of
type Maybe Color. If the RGB value passed to our function is invalid, we return
Nothing, which corresponds to a failure. If, on the other hand, the RGB value is
valid, we create the appropriate Color value and return Just that. The code to do this
is:

rgbToColor 255 0 0 = Just Red
rgbToColor 255 128 0 = Just Orange
rgbToColor 255 255 0 = Just Yellow
rgbToColor 0 255 0 = Just Green
rgbToColor 0 0 255 = Just Blue
rgbToColor 255 0 255 = Just Purple
rgbToColor 255 255 255 = Just White
rgbToColor 0 0 0 = Just Black
rgbToColor r g b =

if 0 <= r && r <= 255 &&
0 <= g && g <= 255 &&
0 <= b && b <= 255

then Just (Custom r g b)
else Nothing -- invalid RGB value

The first eight lines match the RGB arguments against the predefined values and,
if they match, rgbToColor returns Just the appropriate color. If none of these
matches, the last definition of rgbToColor matches the first argument against r, the

7.5. GUARDS 83

second against g and the third against b (which causes the side-effect of binding these
values). It then checks to see if these values are valid (each is greater than or equal to
zero and less than or equal to 255). If so, it returns Just (Custom r g b); if not,
it returns Nothing corresponding to an invalid color.

Using this, we can write a function that checks to see if a right RGB value is valid:

rgbIsValid r g b = rgbIsValid’ (rgbToColor r g b)
where rgbIsValid’ (Just _) = True

rgbIsValid’ _ = False

Here, we compose the helper function rgbIsValid’with our function rgbToColor.
The helper function checks to see if the value returned by rgbToColor is Just any-
thing (the wildcard). If so, it returns True. If not, it matches anything and returns
False.

Pattern matching isn’t magic, though. You can only match against datatypes; you
cannot match against functions. For instance, the following is invalid:

f x = x + 1

g (f x) = x

Even though the intended meaning of g is clear (i.e., g x = x - 1), the com-
piler doesn’t know in general that f has an inverse function, so it can’t perform matches
like this.

7.5 Guards

Guards can be thought of as an extension to the pattern matching facility. They enable
you to allow piecewise function definitions to be taken according to arbitrary boolean
expressions. Guards appear after all arguments to a function but before the equals sign,
and are begun with a vertical bar. We could use guards to write a simple function which
returns a string telling you the result of comparing two elements:

comparison x y | x < y = "The first is less"
| x > y = "The second is less"
| otherwise = "They are equal"

You can read the vertical bar as “such that.” So we say that the value of comparison
x y “such that” x is less than y is “The first is less.” The value such that x is greater
than y is “The second is less” and the value otherwise is “They are equal”. The key-
word otherwise is simply defined to be equal to True and thus matches anything
that falls through that far. So, we can see that this works:

84 CHAPTER 7. ADVANCED FEATURES

Guards> comparison 5 10
"The first is less"
Guards> comparison 10 5
"The second is less"
Guards> comparison 7 7
"They are equal"

One thing to note about guards is that they are tested after pattern matching, not in
conjunction with pattern matching. This means that once a pattern matches, if none of
the guards succeed, further pattern matches will not be attempted. So, if we had instead
defined:

comparison2 x y | x < y = "The first is less"
| x > y = "The second is less"

comparison2 _ _ = "They are equal"

The intention would be that if both of the guards failed, it would “fall through” to
the final match and say that they were equal. This is not what happens, though.

Guards> comparison2 7 7
*** Exception: Guards.hs:8: Non-exhaustive patterns

in function comparison2

If we think about what is happening in the compiler this makes sense. When we
apply two sevens to comparison2, they are matched against x and y, which suc-
ceeds and the values are bound. Pattern matching then stops completely, since it has
succeeded. The guards are then activated and x and y are compared. Neither of the
guards succeeds, so an error is raised.

One nicety about guards is that where clauses are common to all guards. So another
possible definition for our isBright function from the previous section would be:

isBright2 c | r == 255 = True
| g == 255 = True
| b == 255 = True
| otherwise = False

where (r,g,b) = colorToRGB c

The function is equivalent to the previous version, but performs its calculation
slightly differently. It takes a color, c, and applies colorToRGB to it, yielding an
RGB triple which is matched (using pattern matching!) against (r,g,b). This match
succeeds and the values r, g and b are bound to their respective values. The first guard
checks to see if r is 255 and, if so, returns true. The second and third guard check g
and b against 255, respectively and return true if they match. The last guard fires as a
last resort and returns False.

7.6. INSTANCE DECLARATIONS 85

7.6 Instance Declarations

In order to declare a type to be an instance of a class, you need to provide an instance
declaration for it. Most classes provide what’s called a “minimal complete definition.”
This means the functions which must be implemented for this class in order for its
definition to be satisfied. Once you’ve written these functions for your type, you can
declare it an instance of the class.

7.6.1 The Eq Class

The Eq class has two members (i.e., two functions):

(==) :: Eq a => a -> a -> Bool
(/=) :: Eq a => a -> a -> Bool

The first of these type signatures reads that the function == is a function which takes
two as which are members of Eq and produces a Bool. The type signature of /= (not
equal) is identical. A minimal complete definition for the Eq class requires that either
one of these functions be defined (if you define ==, then /= is defined automatically by
negating the result of ==, and vice versa). These declarations must be provided inside
the instance declaration.

This is best demonstrated by example. Suppose we have our color example, re-
peded here for convenience:

data Color
= Red
| Orange
| Yellow
| Green
| Blue
| Purple
| White
| Black
| Custom Int Int Int -- R G B components

We can define Color to be an instance of Eq by the following declaration:

instance Eq Color where
Red == Red = True
Orange == Orange = True
Yellow == Yellow = True
Green == Green = True
Blue == Blue = True
Purple == Purple = True
White == White = True

86 CHAPTER 7. ADVANCED FEATURES

Black == Black = True
(Custom r g b) == (Custom r’ g’ b’) =

r == r’ && g == g’ && b == b’
_ == _ = False

The first line here begins with the keyword instance telling the compiler that we’re
making an instance declaration. It then specifies the class, Eq, and the type, Color

which is going to be an instance of this class. Following that, there’s the where key-
word. Finally there’s the method declaration.

The first eight lines of the method declaration are basically identical. The first one,
for instance, says that the value of the expression Red == Red is equal to True.
Lines two through eight are identical. The declaration for custom colors is a bit differ-
ent. We pattern match Custom on both sides of ==. On the left hand side, we bind r,
g and b to the components, respectively. On the right hand side, we bind r’, g’ and
b’ to the components. We then say that these two custom colors are equal precisely
when r == r’, g == g’ and b == b’ are all equal. The fallthrough says that any
pair we haven’t previously declared as equal are unequal.

7.6.2 The Show Class

The Show class is used to display arbitrary values as strings. This class has three
methods:

show :: Show a => a -> String
showsPrec :: Show a => Int -> a -> String -> String
showList :: Show a => [a] -> String -> String

A minimal complete definition is either show or showsPrec (we will talk about
showsPrec later – it’s in there for efficiency reasons). We can define our Color

datatype to be an instance of Show with the following instance declaration:

instance Show Color where
show Red = "Red"
show Orange = "Orange"
show Yellow = "Yellow"
show Green = "Green"
show Blue = "Blue"
show Purple = "Purple"
show White = "White"
show Black = "Black"
show (Custom r g b) =

"Custom " ++ show r ++ " " ++
show g ++ " " ++ show b

This declaration specifies exactly how to convert values of type Color to Strings.
Again, the first eight lines are identical and simply take a Color and produce a string.

7.6. INSTANCE DECLARATIONS 87

The last line for handling custom colors matches out the RGB components and creates
a string by concattenating the result of showing the components individually (with
spaces in between and “Custom” at the beginning).

7.6.3 Other Important Classes

There are a few other important classes which I will mention briefly because either they
are commonly used or because we will be using them shortly. I won’t provide example
instance declarations; how you can do this should be clear by now.

The Ord Class

The ordering class, the functions are:

compare :: Ord a => a -> a -> Ordering
(<=) :: Ord a => a -> a -> Bool
(>) :: Ord a => a -> a -> Bool
(>=) :: Ord a => a -> a -> Bool
(<) :: Ord a => a -> a -> Bool
min :: Ord a => a -> a -> a
max :: Ord a => a -> a -> a

The almost any of the functions alone is a minimal complete definition; it is rec-
ommended that you implement compare if you implement only one, though. This
function returns a value of type Ordering which is defined as:

data Ordering = LT | EQ | GT

So, for instance, we get:

Prelude> compare 5 7
LT
Prelude> compare 6 6
EQ
Prelude> compare 7 5
GT

In order to declare a type to be an instance of Ord you must already have declared
it an instance of Eq (in other words, Ord is a subclass of Eq – more about this in
Section 8.4).

The Enum Class

The Enum class is for enumerated types; that is, for types where each element has a
successor and a predecessor. It’s methods are:

88 CHAPTER 7. ADVANCED FEATURES

pred :: Enum a => a -> a
succ :: Enum a => a -> a
toEnum :: Enum a => Int -> a
fromEnum :: Enum a => a -> Int
enumFrom :: Enum a => a -> [a]
enumFromThen :: Enum a => a -> a -> [a]
enumFromTo :: Enum a => a -> a -> [a]
enumFromThenTo :: Enum a => a -> a -> a -> [a]

The minimal complete definition contains both toEnum and fromEnum, which
converts from and to Ints. The pred and succ functions give the predecessor and
successor, respectively. The enum functions enumerate lists of elements. For instance,
enumFrom x lists all elements after x; enumFromThen x step lists all elements
starting at x in steps of size step. The To functions end the enumeration at the given
element.

The Num Class

The Num class provides the standard arithmetic operations:

(-) :: Num a => a -> a -> a
(*) :: Num a => a -> a -> a
(+) :: Num a => a -> a -> a
negate :: Num a => a -> a
signum :: Num a => a -> a
abs :: Num a => a -> a
fromInteger :: Num a => Integer -> a

All of these are obvious except for perhaps negate which is the unary minus.
That is, negate x means −x.

The Read Class

The Read class is the opposite of the Show class. It is a way to take a string and read
in from it a value of arbitrary type. The methods for Read are:

readsPrec :: Read a => Int -> String -> [(a, String)]
readList :: String -> [([a], String)]

The minimal complete definition is readsPrec. The most important function
related to this is read, which uses readsPrec as:

read s = fst (head (readsPrec 0 s))

7.6. INSTANCE DECLARATIONS 89

This will fail if parsing the string fails. You could define a maybeRead function
as:

maybeRead s =
case readsPrec 0 s of

[(a,_)] -> Just a
_ -> Nothing

How to write and use readsPrec directly will be discussed further in the exam-
ples.

7.6.4 Class Contexts

Suppose we are definition the Maybe datatype from scratch. The definition would be
something like:

data Maybe a = Nothing
| Just a

Now, when we go to write the instance declarations, for, say, Eq, we need to know
that a is an instance of Eq otherwise we can’t write a declaration. We express this as:

instance Eq a => Eq (Maybe a) where
Nothing == Nothing = True
(Just x) == (Just x’) == x == x’

This first line can be read “That a is an instance of Eq implies (=>) that Maybe a

is an instance of Eq.”

7.6.5 Deriving Classes

Writing obvious Eq, Ord, Read and Show classes like these is tedious and should be
automated. Luckily for us, it is. If you write a datatype that’s “simple enough” (almost
any datatype you’ll write unless you start writing fixed point types), the compiler can
automatically derive some of the most basic classes. To do this, you simply add a
deriving clause to after the datatype declaration, as in:

data Color
= Red
| ...
| Custom Int Int Int -- R G B components
deriving (Eq, Ord, Show, Read)

This will automatically create instances of the Color datatype of the named classes.
Similarly, the declaration:

90 CHAPTER 7. ADVANCED FEATURES

data Maybe a = Nothing
| Just a
deriving (Eq, Ord, Show Read)

derives these classes just when a is appropriate.
All in all, you are allowed to derive instances of Eq, Ord, Enum, Bounded,

Show and Read. There is considerable work in the area of “polytypic programming”
or “generic programming” which, among other things, would allow for instance dec-
larations for any class to be derived. This is much beyond the scope of this tutorial;
instead, I refer you to the literature.

7.7 Datatypes Revisited

I know by this point you’re probably terribly tired of hearing about datatypes. They
are, however, incredibly important, otherwise I wouldn’t devote so much time to them.
Datatypes offer a sort of notational convenience if you have, for instance, a datatype
that holds many many values. These are called named fields.

7.7.1 Named Fields

Consider a datatype whose purpose is to hold configuration settings. Usually when
you extract members from this type, you really only care about one or possibly two of
the many settings. Moreover, if many of the settings have the same type, you might
often find yourself wondering “wait, was this the fourth or fifth element?” One thing
you could do would be to write accessor functions. Consider the following made-up
configuration type for a terminal program:

data Configuration =
Configuration String -- user name

String -- local host
String -- remote host
Bool -- is guest?
Bool -- is super user?
String -- current directory
String -- home directory
Integer -- time connected

deriving (Eq, Show)

You could then write accessor functions, like (I’ve only listed a few):

getUserName (Configuration un _ _ _ _ _ _ _) = un
getLocalHost (Configuration _ lh _ _ _ _ _ _) = lh
getRemoteHost (Configuration _ _ rh _ _ _ _ _) = rh

7.7. DATATYPES REVISITED 91

getIsGuest (Configuration _ _ _ ig _ _ _ _) = ig
...

You could also write update functions to update a single element. Of course, now
if you add an element to the configuration, or remove one, all of these functions now
have to take a different number of arguments. This is highly annoying and is an easy
place for bugs to slip in. However, there’s a solution. We simply give names to the
fields in the datatype declaration, as follows:

data Configuration =
Configuration { username :: String,

localhost :: String,
remotehost :: String,
isguest :: Bool,
issuperuser :: Bool,
currentdir :: String,
homedir :: String,
timeconnected :: Integer

}

This will automatically generate the following accessor functions for us:

username :: Configuration -> String
localhost :: Configuration -> String
...

Moreover, it gives us very convenient update methods. Here is a short example
for a “post working directory” and “change directory” like functions that work on
Configurations:

changeDir :: Configuration -> String -> Configuration
changeDir cfg newDir =

-- make sure the directory exists
if directoryExists newDir

then -- change our current directory
cfg{currentdir = newDir}

else error "directory does not exist"

postWorkingDir :: Configuration -> String
-- retrieve our current directory

postWorkingDir cfg = currentdir cfg

So, in general, to update the field x in a datatype y to z, you write y{x=z}. You
can change more than one; each should be separated by commas, for instance, y{x=z,
a=b, c=d}.

92 CHAPTER 7. ADVANCED FEATURES

You can of course continue to pattern match against Configurations as you did
before. The named fields are simply syntactic sugar; you can still write something like:

getUserName (Configuration un _ _ _ _ _ _ _) = un

But there is little reason to. Finally, you can pattern match against named fields as
in:

getHostData (Configuration {localhost=lh,remotehost=rh})
= (lh,rh)

This matches the variable lh against the localhost field on the Configuration

and the variable rh against the remotehost field on the Configuration. These
matches of course succeed. You could also constrain the matches by putting values
instead of variable names in these positions, as you would for standard datatypes.

You can create values of Configuration in the old way as shown in the first definition
below, or in the named-field’s type, as shown in the second definition below:

initCFG =
Configuration "nobody" "nowhere" "nowhere"

False False "/" "/" 0
initCFG’ =

Configuration
{ username="nobody",
localhost="nowhere",
remotehost="nowhere",
isguest=False,
issuperuser=False,
currentdir="/",
homedir="/",
timeconnected=0 }

Though the second is probably much more understandable unless you litter your
code with comments.

7.8 More Lists

todo: put something here

7.8.1 Standard List Functions

Recall that the definition of the built-in Haskell list datatype is equivalent to:

data List a = Nil
| Cons a (List a)

7.8. MORE LISTS 93

With the exception that Nil is called [] and Cons x xs is called x:xs. This is
simply to make pattern matching easier and code smaller. Let’s investigate how some
of the standard list functions may be written. Consider map. A definition is given
below:

map _ [] = []
map f (x:xs) = f x : map f xs

Here, the first line says that when you map across an empty list, no matter what the
function is, you get an empty list back. The second line says that when you map across
a list with x as the head and xs as the tail, the result is f applied to x consed onto the
result of mapping f on xs.

The filter can be defined similarly:

filter _ [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

How this works should be clear. For an empty list, we return an empty list. For
a non empty list, we return the filter of the tail, perhaps with the head on the front,
depending on whether it satisfies the predicate p or not.

We can define foldr as:

foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Here, the best interpretation is that we are replacing the empty list ([]) with a
particular value and the list constructor (:) with some function. On the first line, we
can see the replacement of [] for z. Using backquotes to make f infix, we can write
the second line as:

foldr f z (x:xs) = x ‘f‘ (foldr f z xs)

From this, we can directly see how : is being replaced by f.
Finally, foldl:

foldl _ z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

This is slightly more complicated. Remember, z can be thought of as the current
state. So if we’re folding across a list which is empty, we simply return the current
state. On the other hand, if the list is not empty, it’s of the form x:xs. In this case, we
get a new state by appling f to the current state z and the current list element x and
then recursively call foldl on xs with this new state.

There is another class of functions: the zip and unzip functions, which respec-
tively take multiple lists and make one or take one lists and split them apart. For
instance, zip does the following:

94 CHAPTER 7. ADVANCED FEATURES

Prelude> zip "hello" [1,2,3,4,5]
[(’h’,1),(’e’,2),(’l’,3),(’l’,4),(’o’,5)]

Basically, it pairs the first elements of both lists and makes that the first element of
the new list. It then pairs the second elements of both lists and makes that the second
element, etc. What if the lists have unequal length? It simply stops when the shorter
one stops. A reasonable definition for zip is:

zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

The unzip function does the opposite. It takes a zipped list and returns the two
“original” lists:

Prelude> unzip [(’f’,1),(’o’,2),(’o’,3)]
("foo",[1,2,3])

There are a whole slew of zip and unzip functions, named zip3, unzip3,
zip4, unzip4 and so on; the ...3 functions use triples instead of pairs; the ...4
functions use 4-tuples, etc.

Finally, the function take takes an integer n and a list and returns the first n
elements off the list. Correspondingly, drop takes an integer n and a list and returns
the result of throwing away the first n elements off the list. Neither of these functions
produces an error; if n is too large, they both will just return shorter lists.

7.8.2 List Comprehensions

There is some syntactic sugar for dealing with lists whose elements are members of the
Enum class (see Section 7.6), such as Int or Char. If we want to create a list of all the
elements from 1 to 10, we can simply write:

Prelude> [1..10]
[1,2,3,4,5,6,7,8,9,10]

We can also introduce an amount to step by:

Prelude> [1,3..10]
[1,3,5,7,9]
Prelude> [1,4..10]
[1,4,7,10]

These expressions are short hand for enumFromTo and enumFromThenTo, re-
spectively. Of course, you don’t need to specify an upper bound. Try the following
(but be ready to hit Control+C to stop the computation!):

7.8. MORE LISTS 95

Prelude> [1..]
[1,2,3,4,5,6,7,8,9,10,11,12{Interrupted!}

Probably yours printed a few thousand more elements than this. As we said before,
Haskell is lazy. That means that a list of all numbers from 1 on is perfectly well formed
and that’s exactly what this list is. Of course, if you attempt to print the list (which
we’re implicitly doing by typing it in the interpreter), it won’t halt. But if we only
evaluate an initial segment of this list, we’re fine:

Prelude> take 3 [1..]
[1,2,3]
Prelude> take 3 (drop 5 [1..])
[6,7,8]

This comes in useful if, say, we want to assign an ID to each element in a list.
Without laziness we’d have to write something like this:

assignID :: [a] -> [(a,Int)]
assignID l = zip l [1..length l]

Which means that the list will be traversed twice. However, because of laziness,
we can simply write:

assignID l = zip l [1..]

And we’ll get exactly what we want. We can see that this works:

Prelude> assignID "hello"
[(’h’,1),(’e’,2),(’l’,3),(’l’,4),(’o’,5)]

Finally, there is some useful syntactic sugar for map and filter, based on stan-
dard set-notation in mathematics. In math, we would write something like {f(x)|x ∈
s∧p(x)} to mean the set of all values of f when applied to elements of s which satisfy
p. This is equivalent to the Haskell statement map f (filter p s). However, we
can also use more math-like notation and write [f x | x <- s, p x]. While in
math the ordering of the statements on the side after the pipe is free, it is not so in
Haskell. We could not have put p x before x <- s otherwise the compiler wouldn’t
know yet what x was. We can use this to do simple string processing. Suppose we
want to take a string, remove all the lower-case letters and convert the rest of the letters
to upper case. We could do this in either of the following two equivalent ways:

Prelude> map toLower (filter isUpper "Hello World")
"hw"
Prelude> [toLower x | x <- "Hello World", isUpper x]
"hw"

96 CHAPTER 7. ADVANCED FEATURES

These two are equivalent, and, depending on the exact functions you’re using, one
might be more readable than the other. There’s more you can do here, though. Suppose
you want to create a list of pairs, one for each point between (0,0) and (5,7) below the
diagonal. Doing this manually with lists and maps would be cumbersome and possibly
difficult to read. It couldn’t be easier than with list comprehensions:

Prelude> [(x,y) | x <- [1..5], y <- [x..7]]
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,2),(2,3),
(2,4),(2,5),(2,6),(2,7),(3,3),(3,4),(3,5),(3,6),(3,7),
(4,4),(4,5),(4,6),(4,7),(5,5),(5,6),(5,7)]

If you reverse the order of the x <- and y <- clauses, the order in which the
space is traversed will be reversed (of course, in that case, y could no longer depend
on x and you would need to make x depend on y but this is trivial).

7.9 Arrays

Lists are nice for many things. It is easy to add elements to the beginning of them and
to manipulate them in various ways that change the length of the list. However, they are
bad for random access, having average complexity O(n) to access an arbitrary element
(if you don’t know what O(. . .) means, you can either ignore it or take a quick detour
and read Appendix A, a two-page introduction to complexity theory). So, if you’re
willing to give up fast insertion and deletion because you need random access, you
should use arrays instead of lists.

In order to use arrays you must import the Array module. There are a few
methods for creating arrays, the array function, the listArray function, and the
accumArray function. The array function takes a pair which is the bounds of
the array, and an association list which specifies the initial values of the array. The
listArray function takes bounds and then simply a list of values. Finally, the
accumArray function takes an accumulation function, an initial value and an associ-
ation list and accumulates pairs from the list into the array. Here are some examples of
arrays being created:

Arrays> array (1,5) [(i,2*i) | i <- [1..5]]
array (1,5) [(1,2),(2,4),(3,6),(4,8),(5,10)]
Arrays> listArray (1,5) [3,7,5,1,10]
array (1,5) [(1,3),(2,7),(3,5),(4,1),(5,10)]
Arrays> accumArray (+) 2 (1,5) [(i,i) | i <- [1..5]]
array (1,5) [(1,3),(2,4),(3,5),(4,6),(5,7)]

When arrays are printed out (via the show function), they are printed with an asso-
ciation list. For instance, in the first example, the association list says that the value of
the array at 1 is 2, the value of the array at 2 is 4, and so on.

You can extract an element of an array using the ! function, which takes an array
and an index, as in:

7.10. FINITE MAPS 97

Arrays> (listArray (1,5) [3,7,5,1,10]) ! 3
5

Moreover, you can update elements in the array using the // function. This takes
an array and an association list and updates the positions specified in the list:

Arrays> (listArray (1,5) [3,7,5,1,10]) //
[(2,99),(3,-99)]

array (1,5) [(1,3),(2,99),(3,-99),(4,1),(5,10)]

There are a few other functions which are of interest:
bounds returns the bounds of an array
indices returns a list of all indices of the array
elems returns a list of all the values in the array in order
assocs returns an association list for the array

If we define arr to be listArray (1,5) [3,7,5,1,10], the result of
these functions applied to arr are:

Arrays> bounds arr
(1,5)
Arrays> indices arr
[1,2,3,4,5]
Arrays> elems arr
[3,7,5,1,10]
Arrays> assocs arr
[(1,3),(2,7),(3,5),(4,1),(5,10)]

Note that while arrays are O(1) access, they are not O(1) update. They are in
fact O(n) update, since in order to maintain purity, the array must be copied in order to
make an update. Thus, functional arrays are pretty much only useful when you’re filling
them up once and then only reading. If you need fast access and update, you should
probably use FiniteMaps, which are discussed in Section 7.10 and have O(log n)
access and update.

7.10 Finite Maps

The FiniteMap datatype (which is available in the FiniteMapmodule, or Data.FiniteMap
module in the hierarchical libraries) is a purely functional implementation of balanced
trees. Finite maps can be compared to lists are arrays in terms of the time it takes to
perform various operations on those datatypes of a fixed size, n. A brief comparison
is:

98 CHAPTER 7. ADVANCED FEATURES

List Array FiniteMap
insert O(1) O(n) O(log n)
update O(n) O(n) O(log n)
delete O(n) O(n) O(log n)
find O(n) O(1) O(log n)
map O(n) O(n) O(n log n)

As we can see, lists provide fast insertion (but slow everything else), arrays pro-
vide fast lookup (but slow everything else) and finite maps provide moderately fast
everything (except mapping, which is a bit slower than lists or arrays).

The type of a finite map is for the form FiniteMapkeyelt where key is the type of
the keys and elt is the type of the elements. That is, finite maps are lookup tables from
type key to type elt.

The basic finite map functions are:

emptyFM :: FiniteMap key elt
addToFM :: FiniteMap key elt -> key -> elt ->

FiniteMap key elt
delFromFM :: FiniteMap key elt -> key ->

FiniteMap key elt
elemFM :: key -> FiniteMap key elt -> Bool
lookupFM :: FiniteMap key elt -> key -> Maybe elt

In all these cases, the type key must be an instance of Ord (and hence also an
instance of Eq).

There are also function listToFM and fmToList to convert lists to and from
finite maps. Try the following:

Prelude> :m FiniteMap
FiniteMap> let fm = listToFM

[(’a’,5),(’b’,10),(’c’,1),(’d’,2)]
FiniteMap> let myFM = addToFM fm ’e’ 6
FiniteMap> fmToList fm
[(’a’,5),(’b’,10),(’c’,1),(’d’,2)]
FiniteMap> fmToList myFM
[(’a’,5),(’b’,10),(’c’,1),(’d’,2),(’e’,6)]
FiniteMap> lookupFM myFM ’e’
Just 6
FiniteMap> lookupFM fm ’e’
Nothing

You can also experiment with the other commands. Note that you cannot show a
finite map, as they are not instances of Show:

FiniteMap> show myFM

7.11. LAYOUT 99

<interactive>:1:
No instance for (Show (FiniteMap Char Integer))
arising from use of ‘show’ at <interactive>:1
In the definition of ‘it’: show myFM

In order to inspect the elements, you first need to use fmToList.

7.11 Layout

7.12 The Final Word on Lists

You are likely tired of hearing about lists at this point, but they are so fundamental to
Haskell (and really all of functional programming) that it would be terrible not to talk
about them some more.

It turns out that foldr is actually quite a powerful function: it can compute an
primitive recursive function. A primitive recursive function is essentially one which primitive recursive
can be calculated using only “for” loops, but not “while” loops.

In fact, we can fairly easily define map in terms of foldr:

map2 f = foldr (\a b -> f a : b) []

Here, b is the accumulator (i.e., the result list) and a is the element being currently
considered. In fact, we can simplify this definition through a sequence of steps:

foldr (\a b -> f a : b) []
==> foldr (\a b -> (:) (f a) b) []
==> foldr (\a -> (:) (f a)) []
==> foldr (\a -> ((:) . f) a) []
==> foldr ((:) . f) []

This is directly related to the fact that foldr (:) [] is the identity function on
lists. This is because, as mentioned before, foldr f z can be thought of as replacing
the [] in lists by z and the : by f. In this case, we’re keeping both the same, so it is
the identity function.

In fact, you can convert any function of the following style into a foldr:

myfunc [] = z
myfunc (x:xs) = f x (myfunc xs)

By writing the last line with f in infix form, this should be obvious:

myfunc [] = z
myfunc (x:xs) = x ‘f‘ (myfunc xs)

100 CHAPTER 7. ADVANCED FEATURES

Clearly, we are just replacing [] with z and : with f. Consider the filter
function:

filter p [] = []
filter p (x:xs) =
if p x
then x : filter p xs
else filter p xs

This function also follows the form above. Based on the first line, we can figure
out that z is supposed to be [], just like in the map case. Now, suppose that we call
the result of calling filter p xs simply b, then we can rewrite this as:

filter p [] = []
filter p (x:xs) =
if p x then x : b else b

Given this, we can transform filter into a fold:

filter p = foldr (\a b -> if p a then a:b else b) []

Let’s consider a slightly more complicated function: ++. The definition for ++ is:

(++) [] ys = ys
(++) (x:xs) ys = x : (xs ++ ys)

Now, the question is whether we can write this in fold notation. First, we can apply
eta reduction to the first line to give:

(++) [] = id

Through a sequence of steps, we can also eta-reduce the second line:

(++) (x:xs) ys = x : ((++) xs ys)
==> (++) (x:xs) ys = (x:) ((++) xs ys)
==> (++) (x:xs) ys = ((x:) . (++) xs) ys
==> (++) (x:xs) = (x:) . (++) xs

Thus, we get that an eta-reduced defintion of ++ is:

(++) [] = id
(++) (x:xs) = (x:) . (++) xs

Now, we can try to put this into fold notation. First, we notice that the base case
converts [] into id. Now, if we assume (++) xs is called b and x is called a, we
can get the following definition in terms of foldr:

7.12. THE FINAL WORD ON LISTS 101

(++) = foldr (\a b -> (a:) . b) id

This actually makes sense intuitively. If we only think about applying ++ to one
argument, we can think of it as a function which takes a list and creates a function
which, when applied, will prepend this list to another list. In the lambda function, we
assume we have a function b which will do this for the rest of the list and we need to
create a function which will do this for b as well as the single element a. In order to
do this, we first apply b and then further add a to the front.

We can further reduce this expression to a point-free style through the following
sequence:

==> (++) = foldr (\a b -> (a:) . b) id
==> (++) = foldr (\a b -> (.) (a:) b) id
==> (++) = foldr (\a -> (.) (a:)) id
==> (++) = foldr (\a -> (.) ((:) a)) id
==> (++) = foldr (\a -> ((.) . (:)) a) id
==> (++) = foldr ((.) . (:)) id

This final version is point free, though not necessarily understandable. Presum-
bably the original version is clearer.

As a final example, consider concat. We can write this as:

concat [] = []
concat (x:xs) = x ++ concat xs

It should be immediately clear that the z element for the fold is [] and that the
recursive function is ++, yielding:

concat = foldr (++) []

Exercises
Exercise 7.2 The function and takes a list of booleans and returns True if and only
if all of them are True. It also returns True on the empty list. Write this function in
terms of foldr.

Exercise 7.3 The function concatMap behaves such that concatMap f is the same
as concat . map f. Write this function in terms of foldr.

102 CHAPTER 7. ADVANCED FEATURES

Chapter 8

Advanced Types

As you’ve probably ascertained by this point, the type system is integral to Haskell.
While this chapter is called “Advanced Types”, you will probably find it to be more
general than that and it must not be skipped simply because you’re not interested in the
type system.

8.1 Type Synonyms

Type synonyms exist in Haskell simply for convenience: their removal would not make
Haskell any less powerful.

Consider the case when you are constantly dealing with lists of three-dimensional
points. For instance, you might have a function with type [(Double,Double,Double)] → Double → [(Double,Double,Double)].
Since you are a good software engineer, you want to place type signatures on all your
top-level functions. However, typing [(Double,Double,Double)] all the time gets very
tedious. To get around this, you can define a type synonym:

type List3D = [(Double,Double,Double)]

Now, the type signature for your functions may be written List3D → Double → List3D.
We should note that type synonyms cannot be self-referential. That is, you cannot

have:

type BadType = Int -> BadType

This is because this is an “infinite type.” Since Haskell removes type synonyms
very early on, any instance of BadType will be replaced by Int → BadType, which
will result in an infinite loop.

Type synonyms can also be parameterized. For instance, you might want to be able
to change the types of the points in the list of 3D points. For this, you could define:

type List3D a = [(a,a,a)]

103

104 CHAPTER 8. ADVANCED TYPES

Then your references to [(Double,Double,Double)] would become List3D Double.

8.2 Newtypes

Consider the problem in which you need to have a type which is very much like Int, but
its ordering is defined differently. Perhaps you wish to order Ints first by even numbers
then by odd numbers (that is, all odd numbers are greater than any even number and
within the odd/even subsets, ordering is standard).

Unfortunately, you cannot define a new instance of Ord for Int because then
Haskell won’t know which one to use. What you want is to define a type which is
isomorphic to Int.

NOTE “Isomorphic” is a common term in mathematics which basi-
cally means “structurally identical.” For instance, in graph theory, if you
have two graphs which are identical except they have different labels on
the nodes, they are isomorphic. In our context, two types are isomorphic
if they have the same underlying structure.

One way to do this would be to define a new datatype:

data MyInt = MyInt Int

We could then write appropriate code for this datatype. The problem (and this is
very subtle) is that this type is not truly isomorphic to Int: it has one more value. When
we think of the type Int, we usually think that it takes all values of integers, but it really
has one more value: | (pronounced “bottom”), which is used to represent erroneous or
undefined computations. Thus, MyInt has not only values MyInt 0, MyInt 1 and
so on, but also MyInt | . However, since datatypes can themselves be undefined, it
has an additional value: | which differs from MyInt | and this makes the types
non-isomorphic. (See Section ?? for more information on bottom.)

Disregarding that subtlety, there may be efficiency issues with this representation:
now, instead of simply storing an integer, we have to store a pointer to an integer and
have to follow that pointer whenever we need the value of a MyInt.

To get around these problems, Haskell has a newtype construction. A newtype is a
cross between a datatype and a type synonym: it has a constructor like a datatype, but
it can have only one constructor and this constructor can have only one argument. For
instance, we can define:

newtype MyInt = MyInt Int

But we cannot define any of:

newtype Bad1 = Bad1a Int | Bad1b Double
newtype Bad2 = Bad2 Int Double

8.3. DATATYPES 105

Of course, the fact that we cannot define Bad2 as above is not a big issue: we can
simply define the following by pairing the types:

newtype Good2 = Good2 (Int,Double)

Now, suppose we’ve defined MyInt as a newtype. This enables use to write our
desired instance of Ord as:

instance Ord MyInt where
MyInt i < MyInt j

| odd i && odd j = i < j
| even i && even j = i < j
| even i = True
| otherwise = False
where odd x = (x ‘mod‘ 2) == 0

even = not . odd

Like datatype, we can still derive classes like Show and Eq over newtypes (in fact,
I’m implicitly assuming we have derived Eq over MyInt – where is my assumption in
the above code?).

Moreover, in recent versions of GHC (see Section 2.2), on newtypes, you are al-
lowed to derive any class of which the base type (in this case, Int) is an instance. For
example, we could derive Num on MyInt to provide arithmetic functions over it.

Pattern matching over newtypes is exactly as in datatypes. We can write constructor
and destructor functions for MyInt as follows:

mkMyInt i = MyInt i
unMyInt (MyInt i) = i

8.3 Datatypes

We’ve already seen datatypes used in a variety of contexts. This section concludes
some of the discussion and introduces some of the common datatypes in Haskell. It
also provides a more theoretical underpinning to what datatypes actually are.

8.3.1 Strict Fields

One of the great things about Haskell is that computation is performed lazily. However,
sometimes this leads to inefficiencies. One way around this problem is to use datatypes
with strict fields. Before we talk about the solution, let’s spend some time to get a
bit more comfortable with how bottom works in to the picture (for more theory, see
Section ??).

Suppose we’ve defined the unit datatype (this one of the simplest datatypes you can
define):

106 CHAPTER 8. ADVANCED TYPES

data Unit = Unit

This datatype has exactly one constructor, Unit, which takes no arguments. In a
strict language like ML, there would be exactly one value of type Unit: namely, Unit.
This is not quite so in Haskell. In fact, there are two values of type Unit. One of them
is Unit. The other is bottom (written |).

You can think of bottom as representing a computation which won’t halt. For in-
stance, suppose we define the value:

foo = foo

This is perfectly valid Haskell code and simply says that when you want to evaluate
foo, all you need to do is evaluate foo. Clearly this is an “infinite loop.”

What is the type of foo? Simply a. We cannot say anything more about it than
that. The fact that foo has type a in fact tells us that it must be an infinite loop (or
some other such strange value). However, since foo has type a and thus can have any
type, it can also have type Unit. We could write, for instance:

foo :: Unit
foo = foo

Thus, we have found a second value with type Unit. In fact, we have found all
values of type Unit. Any other non-terminating function or error-producing function
will have exactly the same effect as foo (though Haskell provides some more utility
with the function error).

This mean, for instance, that there are actually four values with type Maybe Unit.
They are: | , Nothing, Just | and Just Unit. However, it could be the fact
that you, as a programmer, know that you will never come across the third of these.
Namely, you want the argument to Just to be strict. This means that if the argument
to Just is bottom, then the entire structure becomes bottom. You use an exclamation
point to specify a constructor as strict. We can define a strict version of Maybe as:

data SMaybe a = SNothing | SJust !a

There are now only three values of SMaybe. We can see the difference by writing
the follwing program:

module Main where

import System

data SMaybe a = SNothing | SJust !a deriving Show

8.3. DATATYPES 107

main = do
[cmd] <- getArgs
case cmd of
"a" -> printJust undefined
"b" -> printJust Nothing
"c" -> printJust (Just undefined)
"d" -> printJust (Just ())

"e" -> printSJust undefined
"f" -> printSJust SNothing
"g" -> printSJust (SJust undefined)
"h" -> printSJust (SJust ())

printJust :: Maybe () -> IO ()
printJust Nothing = putStrLn "Nothing"
printJust (Just x) = do putStr "Just "; print x

printJust :: SMaybe () -> IO ()
printSJust SNothing = putStrLn "Nothing"
printSJust (SJust x) = do putStr "Just "; print x

Here, depending on what command line argument is passed, we will do something
different. The outputs for the various options are:

\% ./strict a
Fail: Prelude.undefined

\% ./strict b
Nothing

\% ./strict c
Just
Fail: Prelude.undefined

\% ./strict d
Just ()

\% ./strict e
Fail: Prelude.undefined

\% ./strict f
Nothing

\% ./strict g
Fail: Prelude.undefined

108 CHAPTER 8. ADVANCED TYPES

\% ./strict h
Just ()

The thing worth noting here is the difference between cases “c” and “g”. In the
“c” case, the Just is printed, because this is printed before the undefined value is
evaluated. However, in the “g” case, since the constructor is strict, as soon as you
match the SJust, you also match the value. In this case, the value is undefined, so the
whole thing fails before it gets a chance to do anything.

8.4 Classes

We have already encountered type classes a few times, but only in the context of pre-
viously existing type classes. This section is about how to define your own. We will
begin the discussion by talking about Pong and then move on to a useful generalization
of computations.

8.4.1 Pong

The discussion here will be motivated by the construction of the game Pong (see Ap-
pendix ?? for the full code). In Pong, there are three things drawn on the screen: the
two paddles and the ball. While the paddles and the ball are different in a few respects,
they share many commonalities, such as position, velocity, acceleration, color, shape,
and so on. We can express these commonalities by defining a class for Pong entities,
which we call Entity. We make such a definition as follows:

class Entity a where
getPosition :: a -> (Int,Int)
getVelocity :: a -> (Int,Int)
getAcceleration :: a -> (Int,Int)
getColor :: a -> Color
getShape :: a -> Shape

This code defines a typeclass Entity. This class has five methods: getPosition,
getVelocity, getAcceleration, getColor and getShape with the corre-
sponding types.

The first line here uses the keyword class to introduce a new typeclass. We can
read this typeclass definition as “There is a typeclass ’Entity’; a type ’a’ is an instance
of Entity if it provides the following five functions: . . . ”. To see how we can write an
instance of this class, let us define a player (paddle) datatype:

data Paddle =
Paddle { paddlePosX, paddlePosY,

paddleVelX, paddleVelY,
paddleAccX, paddleAccY :: Int,
paddleColor :: Color,

8.4. CLASSES 109

paddleHeight :: Int,
playerNumber :: Int }

Given this data declaration, we can define Paddle to be an instance of Entity:

instance Entity Paddle where
getPosition p = (paddlePosX p, paddlePosY p)
getVelocity p = (paddleVelX p, paddleVelY p)
getAcceleration p = (paddleAccX p, paddleAccY p)
getColor = paddleColor
getShape = Rectangle 5 . paddleHeight

The actual Haskell types of the class functions all have included the context Entity
a =>. For example, getPosition has type Entity a ⇒ a → (Int, Int). However,
it will turn out that many of our routines will need entities to also be instances of Eq.
We can therefore choose to make Entity a subclass of Eq: namely, you can only be
an instance of Entity if you are already an instance of Eq. To do this, we change the
first line of the class declaration to:

class Eq a => Entity a where

Now, in order to define Paddles to be instances of Entity we will first need them
to be instances of Eq – we can do this by deriving the class.

8.4.2 Computations

Let’s think back to our original motivation for defining the Maybe datatype from Sec-
tion ??. We wanted to be able to express that functions (i.e., computations) can fail.

Let us consider the case of performing search on a graph. Allow us to take a small
aside to set up a small graph library:

data Graph v e = Graph [(Int,v)] [(Int,Int,e)]

The Graph datatype takes two type arguments which correspond to vertex and edge
labels. The first argument to the Graph constructor is a list (set) of vertices; the second
is the list (set) of edges. We will assume these lists are always sorted and that each
vertex has a unique id and that there is at most one edge between any two vertices.

Suppose we want to search for a path between two vertices. Perhaps there is no
path between those vertices. To represent this, we will use the Maybe datatype. If
it succeeds, it will return the list of vertices traversed. Our search function could be
written (naively) as follows:

search :: Graph v e -> Int -> Int -> Maybe [Int]
search g@(Graph vl el) src dst

| src == dst = Just [src]

110 CHAPTER 8. ADVANCED TYPES

| otherwise = search’ el
where search’ [] = Nothing

search’ ((u,v,_):es)
| src == u =
case search g v dst of
Just p -> Just (u:p)
Nothing -> search’ es

| otherwise = search’ es

This algorithm works as follows (try to read along): to search in a graph g from
src to dst, first we check to see if these are equal. If they are, we have found our
way and just return the trivial solution. Otherwise, we want to traverse the edge-list.
If we’re traversing the edge-list and it is empty, we’ve failed, so we return Nothing.
Otherwise, we’re looking at an edge from u to v. If u is our source, then we consider
this step and recursively search the graph from v to dst. If this fails, we try the rest of
the edges; if this succeeds, we put our current position before the path found and return.
If u is not our source, this edge is useless and we continue traversing the edge-list.

This algorithm is terrible: namely, if the graph contains cycles, it can loop indefi-
nitely. Nevertheless, it is sufficent for now. Be sure you understand it well: things only
get more complicated.

Now, there are cases where the Maybe datatype is not sufficient: perhaps we wish
to include an error message together with the failure. We could define a datatype to
express this as:

data Failable a = Success a | Fail String

Now, failures come with a failure string to express what went wrong. We can
rewrite our search function to use this datatype:

search2 :: Graph v e -> Int -> Int -> Failable [Int]
search2 g@(Graph vl el) src dst

| src == dst = Success [src]
| otherwise = search’ el
where search’ [] = Fail "No path"

search’ ((u,v,_):es)
| src == u =
case search2 g v dst of
Success p -> Success (u:p)
_ -> search’ es

| otherwise = search’ es

This code is a straightforward translation of the above.
There is another option for this computation: perhaps we want not just one path,

but all possible paths. We can express this as a function which returns a list of lists of
vertices. The basic idea is the same:

8.4. CLASSES 111

search3 :: Graph v e -> Int -> Int -> [[Int]]
search3 g@(Graph vl el) src dst

| src == dst = [[src]]
| otherwise = search’ el
where search’ [] = []

search’ ((u,v,_):es)
| src == u =

map (u:) (search3 g v dst) ++
search’ es

| otherwise = search’ es

The code here has gotten a little shorter, thanks to the standard prelude map func-
tion, though it is essentially the same.

We may ask ourselves what all of these have in common and try to gobble up
those commonalities in a class. In essense, we need some way of representing success
and some way of representing failure. Furthermore, we need a way to combine two
successes (in the first two cases, the first success is chosen; in the third, they are strung
together). Finally, we need to be able to augment a previous success (if there was one)
with some new value. We can fit this all into a class as follows:

class Computation c where
success :: a -> c a
failure :: String -> c a
augment :: c a -> (a -> c b) -> c b
combine :: c a -> c a -> c a

In this class declaration, we’re saying that c is an instance of the class Computation

if it provides four functions: success, failure, augment and combine. The
success function takes a value of type a and returns it wrapped up in c, representing
a successful computation. The failure function takes a String and returns a compu-
tation representing a failure. The combine function takes two previous computation
and produces a new one which is the combination of both. The augment function is
a bit more complex.

The augment function takes some previously given computation (namely, c a)
and a function which takes the value of that computation (the a) and returns a b and
produces a b inside of that computation. Note that in our current situation, giving
augment the type c a → (a → a) → c a would have been sufficient, since a is always
[Int], but we make it this more general time just for generality.

How augment works is probably best shown by example. We can define Maybe,
Failable and [] to be instances of Computation as:

instance Computation Maybe where
success = Just
failure = const Nothing

112 CHAPTER 8. ADVANCED TYPES

augment (Just x) f = f x
augment Nothing _ = Nothing
combine Nothing y = y
combine x _ = x

Here, success is represented with Just and failure ignores its argument and
returns Nothing. The combine function takes the first success we found and ignores
the rest. The function augment checks to see if we succeeded before (and thus had
a Just something) and, if we did, applies f to it. If we failed before (and thus had a
Nothing), we ignore the function and return Nothing.

instance Computation Failable where
success = Success
failure = Fail
augment (Success x) f = f x
augment (Fail s) _ = Fail s
combine (Fail _) y = y
combine x _ = x

These definitions are obvious. Finally:

instance Computation [] where
success a = [a]
failure = const []
augment l f = concat (map f l)
combine = (++)

Here, the value of a successful computation is a singleton list containing that value.
Failure is represented with the empty list and to combine previous successes we simply
catentate them. Finally, augmenting a computation amounts to mapping the function
across the list of previous computations and concatentate them. we apply the function
to each element in the list and then concatenate the results.

Using these computations, we can express all of the above versions of search as:

searchAll g@(Graph vl el) src dst
| src == dst = success [src]
| otherwise = search’ el
where search’ [] = failure "no path"

search’ ((u,v,_):es)
| src == u = (searchAll g v dst ‘augment‘

(success . (u:)))
‘combine‘ search’ es

| otherwise = search’ es

8.5. INSTANCES 113

In this, we see the uses of all the functions from the class Computation.
If you’ve understood this discussion of computations, you are in a very good posi-

tion as you have understood the concept of monads, probably the most difficult concept
in Haskell. In fact, the Computation class is almost exactly the Monad class, ex-
cept that success is called return, failure is called fail and augment is
called >>= (read “bind”). The combine function isn’t actually required by monads,
but is found in the MonadPlus class for reasons which will become obvious later.

If you didn’t understand everything here, read through it again and then wait for
the proper discussion of monads in Chapter 9.

8.5 Instances

We have already seen how to declare instances of some simple classes; allow us to
consider some more advanced classes here. There is a Functor class defined in the
Functor module.

NOTE The name “functor”, like “monad” comes from category the-
ory. There, a functor is like a function, but instead of mapping elements
to elements, it maps structures to structures.

The definition of the functor class is:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The type definition for fmap (not to mention its name) is very similar to the func-
tion map over lists. In fact, fmap is essentially a generalization of map to arbitrary
structures (and, of course, lists are already instances of Functor). However, we can
also define other structures to be instances of functors. Consider the following datatype
for binary trees:

data BinTree a = Leaf a
| Branch (BinTree a) (BinTree a)

We can immediately identify that the BinTree type essentially “raises” a type a into
trees of that type. There is a naturally associated functor which goes along with this
raising. We can write the instance:

instance Functor BinTree where
fmap f (Leaf a) = Leaf (f a)
fmap f (Branch left right) =

Branch (fmap f left) (fmap f right)

114 CHAPTER 8. ADVANCED TYPES

Now, we’ve seen how to make something like BinTree an instance of Eq by using
the deriving keyword, but here we will do it by hand. We want to make BinTree as
instances of Eq but obviously we cannot do this unless a is itself an instance of Eq.
We can specify this dependence in the instance declaration:

instance Eq a => Eq (BinTree a) where
Leaf a == Leaf b = a == b
Branch l r == Branch l’ r’ = l == l’ && r == r’
_ == _ = False

The first line of this can be read “if a is an instance of Eq, then BinTree a is also
an instance of Eq”. We then provide the definitions. If we did not include the “Eq a
=>” part, the compiler would complain because we’re trying to use the == function on
as in the second line.

The “Eq a =>” part of the definition is called the “context.” We should note that
there are some restrictions on what can appear in the context and what can appear in
the declaration. For instance, we’re not allowed to have instance declarations that don’t
contain type constructors on the right hand side. To see why, consider the following
declarations:

class MyEq a where
myeq :: a -> a -> Bool

instance Eq a => MyEq a where
myeq = (==)

As it stands, there doesn’t seem to be anything wrong with this definition. However,
if elsewhere in a program we had the definition:

instance MyEq a => Eq a where
(==) = myeq

In this case, if we’re trying to establish if some type is an instance of Eq, we could
reduce it to trying to find out if that type is an instance of MyEq, which we could
in turn reduce to trying to find out if that type is an instance of Eq, and so on. The
compiler protects itself against this by refusing the first instance declaration.

This is commonly known as the closed-world assumption. That is, we’re assuming,
when we write a definition like the first one, that there won’t be any declarations like
the second. However, this assumption is invalid because there’s nothing to prevent the
second declaration (or some equally evil declaration). The closed world assumption
can also bite you in cases like:

class OnlyInts a where
foo :: a -> a -> Bool

8.6. KINDS 115

instance OnlyInts Int where
foo == (==)

bar :: OnlyInts a => a -> Bool
bar = foo 5

We’ve again made the closed-world assumption: we’ve assumed that the only in-
stance of OnlyInts is Int, but there’s no reason another instance couldn’t be defined
elsewhere, ruining our defintion of bar.

8.6 Kinds

Let us take a moment and think about what types are available in Haskell. We have
simple types, like Int, Char, Double and so on. We then have type constructors like
Maybe which take a type (like Char) and produce a new type, Maybe Char. Similarly,
the type constructor [] (lists) takes a type (like Int) and produces [Int]. We have more
complex things like → (function arrow) which takes two types (say Int and Bool) and
produces a new type Int → Bool.

In a sense, these types themselves have type. Types like Int have some sort of basic
type. Types like Maybe have a type which takes something of basic type and returns
something of basic type. And so forth.

Talking about the types of types becomes unwieldy and highly ambiguous, so we
call the types of types “kinds.” What we have been calling “basic types” have kind
“*”. Something of kind * is something which can have an actual value. There is also a
single kind constructor, → with which we can build more complex kinds.

Consider Maybe. This takes something of kind * and produces something of kind
*. Thus, the kind of Maybe is * -> *. Recall the definition of Pair from Sec-
tion 4.5.1:

data Pair a b = Pair a b

Here, Pair is a type constructor which takes two arguments, each of kind * and
produces a type of kind *. Thus, the kind of Pair is * -> (* -> *). However, we
again assume associativity so we just write * -> * -> *.

Let us make a slightly strange datatype definition:

data Strange c a b =
MkStrange (c a) (c b)

Before we analyze the kind of Strange, let’s think about what it does. It is essen-
tially a pairing constructor, though it doesn’t pair actual elements, but elements within
another constructor. For instance, think of c as Maybe. Then MkStrange pairs Maybes
of the two types a and b. However, c need not be Maybe but could instead by [], or
many other things.

116 CHAPTER 8. ADVANCED TYPES

What do we know about c, though? We know that it must have kind * -> *. This
is because we have c a on the right hand side. The type variables a and b each have
kind * as before. Thus, the kind of Strange is (* -> *) -> * -> * -> *. That
is, it takes a constructor (c) of kind * -> * together with two types of kind * and
produces something of kind *.

A question may arise regarding how we know a has kind * and not some other
kind k. In fact, the inferred kind for Strange is (k -> *) -> k -> k -> *.
However, this requires polymorphism on the kind level, which is too complex, so we
make a default assumption that k = *.

NOTE There are extensions to GHC which allow you to specify the
kind of constructors directly. For instance, if you wanted a different kind,
you could write this explicitly:

data Strange (c :: (* -> *) -> *) a b = MkStrange (c a) (c b)

to give a different kind to Strange.

The notation of kinds suggests that we can perform partial application, as we can
for functions. And, in fact, we can. For instance, we could have:

type MaybePair = Strange Maybe

The kind of MaybePair is, not surprisingly, * -> * -> *.
We should note here that all of the following definitions are acceptable:

type MaybePair1 = Strange Maybe
type MaybePair2 a = Strange Maybe a
type MaybePair3 a b = Strange Maybe a b

These all appear to be the same, but they are in fact not identical as far as Haskell’s
type system is concerned. The following are all valid type definitions using the above:

type MaybePair1a = MaybePair1
type MaybePair1b = MaybePair1 Int
type MaybePair1c = MaybePair1 Int Double

type MaybePair2b = MaybePair2 Int
type MaybePair2c = MaybePair2 Int Double

type MaybePair3c = MaybePair3 Int Double

But the following are not valid:

8.7. CLASS HIERARCHIES 117

type MaybePair2a = MaybePair2

type MaybePair3a = MaybePair3
type MaybePair3b = MaybePair3 Int

This is because while it is possible to partially apply type constructors on datatypes,
it is not possible on type synonyms. For instance, the reason MaybePair2a is invalid
is because MaybePair2 is defined as a type synonym with one argument and we have
given it none. The same applies for the invalid MaybePair3 definitions.

8.7 Class Hierarchies

8.8 Default

what is it?

118 CHAPTER 8. ADVANCED TYPES

Chapter 9

Monads

The most difficult concept to master, while learning Haskell, is that of understanding
and using monads. We can distinguish two subcomponents here: (1) learning how
to use existing monads and (2) learning how to write new ones. If you want to use
Haskell, you must learn to use existing monads. On the other hand, you will only need
to learn to write your own monads if you want to become a “super Haskell guru.” Still,
if you can grasp writing your own monads, programming in Haskell will be much more
pleasant.

So far we’ve seen two uses of monads. The first use was IO actions: We’ve seen
that, by using monads, we can abstract get away from the problems plaguing the Real-
World solution to IO presented in Chapter 5. The second use was representing different
types of computations in Section 8.4.2. In both cases, we needed a way to sequence
operations and saw that a sufficient definition (at least for computations) was: computations

class Computation c where
success :: a -> c a
failure :: String -> c a
augment :: c a -> (a -> c b) -> c b
combine :: c a -> c a -> c a

Let’s see if this definition will enable us to also perform IO. Essentially, we need
a way to represent taking a value out of an action and performing some new operation
on it (as in the example from Section 4.4.3, rephrased slightly):

main = do
s <- readFile "somefile"
putStrLn (show (f s))

But this is exactly what augment does. Using augment, we can write the above
code as:

119

120 CHAPTER 9. MONADS

main = -- note the lack of a "do"
readFile "somefile" ‘augment‘ \s ->
putStrLn (show (f s))

This certainly seems to be sufficient. And, in fact, it turns out to be more than
sufficient.

The definition of a monad is a slightly trimmed-down version of our Computation

class. The Monad class has four methods (but the fourth method can be defined in
terms of the third):

class Monad m where
return :: a -> m a
fail :: String -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b

In this definition, return is equivalent to our success; fail is equivalent to
our failure; and >>= (read: “bind”) is equivalent to our augment. The >> (read:bind
“then”) method is simply a version of >>= that ignores the a. This will turn out to bethen
useful; although, as mentioned before, it can be defined in terms of >>=:

a >> x = a >>= _ -> x

9.1 Do Notation

We have hinted that there is a connection between monads and the do notation. Here,
we make that relationship concrete. There is actually nothing magic about the do
notation – it is simply “syntactic sugar” for monadic operations.syntactic sugar

As we mentioned earlier, using our Computation class, we could define our
above program as:

main =
readFile "somefile" ‘augment‘ \s ->
putStrLn (show (f s))

But we now know that augment is called >>= in the monadic world. Thus, this
program really reads:

main =
readFile "somefile" >>= \s ->
putStrLn (show (f s))

9.1. DO NOTATION 121

And this is completely valid Haskell at this point: if you defined a function f ::
Show a => String -> a, you could compile and run this program)

This suggests that we can translate:

x <- f
g x

into f >>= \x -> g x. This is exactly what the compiler does. Talking about
do becomes easier if we do not use implicit layout (see Section ?? for how to do this).
There are four translation rules:

1. do {e} → e

2. do {e; es} → e >> do {es}

3. do {let decls; es} → let decls in do {es}

4. do {p <- e; es}→ let ok p = do {es} ; ok = fail "..."
in e >>= ok

Again, we will elaborate on these one at a time:

Translation Rule 1

The first translation rule, do {e} → e, states (as we have stated before) that when
performing a single action, having a do or not is irrelevant. This is essentially the base
case for an inductive definition of do. The base case has one action (namely e here);
the other three translation rules handle the cases where there is more than one action.

Translation Rule 2

This states that do {e; es} → e >> do {es}. This tells us what to do if we have
an action (e) followed by a list of actions (es). Here, we make use of the >> function,
defined earlier. This rule simple states that to do {e; es}, we first perform the action
e, throw away the result, and then do es.

For instance, if e is putStrLn s for some string s, then the translation of do
{e; es} is to perform e (i.e., print the string) and then do es. This is clearly what
we want.

Translation Rule 3

This states that do {let decls; es} → let decls in do {es}. This rule
tells us how to deal with lets inside of a do statement. We lift the declarations within let
the let out and do whatever comes after the declarations.

122 CHAPTER 9. MONADS

Translation Rule 4

This states that do {p <- e; es}→ let ok p = do {es} ; ok = fail
"..." in e >>= ok. Again, it is not exactly obvious what is going on here. How-
ever, an alternate formulation of this rule, which is roughly equivalent, is: do {p <-
e; es} → e >>= \p -> es. Here, it is clear what is happening. We run the
action e, and then send the results into es, but first give the result the name p.

The reason for the complex definition is that p doesn’t need to simply be a variable;
it could be some complex pattern. For instance, the following is valid code:

foo = do (’a’:’b’:’c’:x:xs) <- getLine
putStrLn (x:xs)

In this, we’re assuming that the results of the action getLine will begin with
the string “abc” and will have at least one more character. The question becomes
what should happen if this pattern match fails. The compiler could simply throw an
error, like usual, for failed pattern matches. However, since we’re within a monad, we
have access to a special fail function, and we’d prefer to fail using that function,
rather than the “catch all” error function. Thus, the translation, as defined, allows
the compiler to fill in the ... with an appropriate error message about the pattern
matching having failed. Apart from this, the two definitions are equivalent.

9.2 Definition

There are three rules that all monads must obey called the “Monad Laws” (and it is upmonad laws
to you to ensure that your monads obey these rules) :

1. return a >>= f ≡ f a

2. f >>= return ≡ f

3. f >>= (\x -> g x >>= h) ≡ (f >>= g) >>= h

Let’s look at each of these individually:

Law 1

This states that return a >>= f ≡ f a. Suppose we think about monads as com-
putations. This means that if we create a trivial computation that simply returns the
value a regardless of anything else (this is the return a part); and then bind it to-
gether with some other computation f, then this is equivalent to simply performing the
computation f on a directly.

For example, suppose f is the function putStrLn and a is the string “Hello
World.” This rule states that binding a computation whose result is “Hello World”
to putStrLn is the same as simply printing it to the screen. This seems to make
sense.

In do notation, this law states that the following two programs are equivalent:

9.2. DEFINITION 123

law1a = do
x <- return a
f x

law1b = do
f a

Law 2

The second monad law states that f >>= return ≡ f. That is, f is some computa-
tion, the law states that if we perform the computation f and then pass the result on to
the trivial return function, then all we have done is to perform the computation.

That this law must hold should be obvious. To see this, think of f as getLine
(reads a string from the keyboard). This law states that reading a string and then re-
turning the value read is exactly the same as just reading the string.

In do notation, the law states that the following two programs are equivalent:

law2a = do
x <- f
return x

law2b = do
f

Law 3

This states that f >>= (\x -> g x >>= h) ≡ (f >>= g) >>= h. At first
glance, this law is not as easy to grasp as the other two. It is essentially an associativity associative
law for monads.

NOTE Outside the world of monads, a function · is associative if
(f · g) · h = f · (g · h). For instance, + and * are associative, since
bracketing on these functions doesn’t make a difference. On the other
hand, - and / are not associative since, for example, 5 − (3 − 1) 6=
(5 − 3) − 1.

If we throw away the messiness with the lambdas, we see that this law states: f
>>= (g >>= h) ≡ (f >>= g) >>= h. The intuition behind this law is that
when we string together actions, it doesn’t matter how we group them.

For a concrete example, take f to be getLine. Take g to be an action which takes
a value as input, prints it to the screen, reads another string via getLine, and then
returns that newly read string. Take h to be putStrLn.

Let’s consider what (\x -> g x >>= h) does. It takes a value called x, and
runs g on it, feeding the results into h. In this instance, this means that it’s going to

124 CHAPTER 9. MONADS

take a value, print it, read another value and then print that. Thus, the entire left hand
side of the law first reads a string and then does what we’ve just described.

On the other hand, consider (f >>= g). This action reads a string from the
keyboard, prints it, and then reads another string, returning that newly read string as a
result. When we bind this with h as on the right hand side of the law, we get an action
that does the action described by (f >>= g), and then prints the results.

Clearly, these two actions are the same.
While this explanation is quite complicated, and the text of the law is also quite

complicated, the actual meaning is simple: if we have three actions, and we compose
them in the same order, it doesn’t matter where we put the parentheses. The rest is just
notation.

In do notation, says that the following two programs are equivalent:

law3a = do
x <- f
do g <- x

h y

law3b = do
y <- do x <- f

g x
h y

9.3 A Simple State Monad

One of the simplest monads that we can craft is a state-passing monad. In Haskell, all
state information usually must be passed to functions explicitly as arguments. Using
monads, we can effectively hide some state information.

Suppose we have a function f of type a → b, and we need to add state to this
function. In general, if state is of type state, we can encode it by changing the type of
f to a → state → (state, b). That is, the new version of f takes the original parameter
of type a and a new state parameter. And, in addition to returning the value of type b,
it also returns an updated state, encoded in a tuple.

For instance, suppose we have a binary tree defined as:

data Tree a
= Leaf a
| Branch (Tree a) (Tree a)

Now, we can write a simple map function to apply some function to each value in
the leaves:

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf a) = Leaf (f a)

9.3. A SIMPLE STATE MONAD 125

mapTree f (Branch lhs rhs) =
Branch (mapTree f lhs) (mapTree f rhs)

This works fine until we need to write a function that numbers the leaves left to
right. In a sense, we need to add state, which keeps track of how many leaves we’ve
numbered so far, to the mapTree function. We can augment the function to something
like:

mapTreeState :: (a -> state -> (state, b)) ->
Tree a -> state -> (state, Tree b)

mapTreeState f (Leaf a) state =
let (state’, b) = f a state
in (state’, Leaf b)

mapTreeState f (Branch lhs rhs) state =
let (state’ , lhs’) = mapTreeState f lhs state

(state’’, rhs’) = mapTreeState f rhs state’
in (state’’, Branch lhs’ rhs’)

This is beginning to get a bit unweildy, and the type signature is getting harder and
harder to understand. What we want to do is abstract away the state passing part. That
is, the differences between mapTree and mapTreeState are: (1) the augmented f
type, (2) we replaced the type -> Tree b with -> state -> (state, Tree
b). Notice that both types changed in exactly the same way. We can abstract this away
with a type synonym declaration:

type State st a = st -> (st, a)

To go along with this type, we write two functions:

returnState :: a -> State st a
returnState a = \st -> (st, a)

bindState :: State st a -> (a -> State st b) ->
State st b

bindState m k = \st ->
let (st’, a) = m st

m’ = k a
in m’ st’

Let’s examine each of these in turn. The first function, returnState, takes a
value of type a and creates something of type State st a. If we think of the st
as the state, and the value of type a as the value, then this is a function that doesn’t
change the state and returns the value a.

The bindState function looks distinctly like the interior let declarations in mapTreeState.
It takes two arguments. The first argument is an action that returns something of type

126 CHAPTER 9. MONADS

a with state st. The second is a function that takes this a and produces something of
type b also with the same state. The result of bindState is essentially the result of
transforming the a into a b.

The definition of bindState takes an initial state, st. It first applies this to the
State st a argument called m. This gives back a new state st’ and a value a. It
then lets the function k act on a, producing something of type State st b, called
m’. We finally run m’ with the new state st’.

We write a new function, mapTreeStateM and give it the type:

mapTreeStateM :: (a -> State st b) -> Tree a -> State st (Tree b)

Using these “plumbing” functions (returnState and bindState) we can
write this function without ever having to explicitly talk about the state:

mapTreeStateM f (Leaf a) =
f a ‘bindState‘ \b ->
returnState (Leaf b)

mapTreeStateM f (Branch lhs rhs) =
mapTreeStateM f lhs ‘bindState‘ \lhs’ ->
mapTreeStateM f rhs ‘bindState‘ \rhs’ ->
returnState (Branch lhs’ rhs’)

In the Leaf case, we apply f to a and then bind the result to a function that takes
the result and returns a Leaf with the new value.

In the Branch case, we recurse on the left-hand-side, binding the result to a func-
tion that recurses on the right-hand-side, binding that to a simple function that returns
the newly created Branch.

As you have probably guessed by this point, State st is a monad, returnState
is analogous to the overloaded return method, and bindState is analogous to the
overloaded >>= method. In fact, we can verify that State st a obeys the monad
laws:

Law 1 states: return a >>= f ≡ f a. Let’s calculate on the left hand side,
substituting our names:

returnState a ‘bindState‘ f
==>

\st -> let (st’, a) = (returnState a) st
m’ = f a

in m’ st’
==>

\st -> let (st’, a) = (\st -> (st, a)) st
in (f a) st’

==>
\st -> let (st’, a) = (st, a)

in (f a) st’

9.3. A SIMPLE STATE MONAD 127

==>
\st -> (f a) st

==>
f a

In the first step, we simply substitute the definition of bindState. In the second
step, we simplify the last two lines and substitute the definition of returnState. In
the third step, we apply st to the lambda function. In the fourth step, we rename st’
to st and remove the let. In the last step, we eta reduce.

Moving on to Law 2, we need to show that f >>= return ≡ f. This is shown
as follows:

f ‘bindState‘ returnState
==>

\st -> let (st’, a) = f st
in (returnState a) st’

==>
\st -> let (st’, a) = f st

in (\st -> (st, a)) st’
==>

\st -> let (st’, a) = f st
in (st’, a)

==>
\st -> f st

==>
f

Finally, we need to show that State obeys the third law: f >>= (\x -> g x
>>= h) ≡ (f >>= g) >>= h. This is much more involved to show, so we will
only sketch the proof here. Notice that we can write the left-hand-side as:

\st -> let (st’, a) = f st
in (\x -> g x ‘bindState‘ h) a st’

==>
\st -> let (st’, a) = f st

in (g a ‘bindState‘ h) st’
==>

\st -> let (st’, a) = f st
in (\st’ -> let (st’’, b) = g a

in h b st’’) st’
==>

\st -> let (st’ , a) = f st
(st’’, b) = g a st’
(st’’’,c) = h b st’’

in (st’’’,c)

128 CHAPTER 9. MONADS

The interesting thing to note here is that we have both action applications on the
same let level. Since let is associative, this means that we can put whichever bracketing
we prefer and the results will not change. Of course, this is an informal, “hand waving”
argument and it would take us a few more derivations to actually prove, but this gives
the general idea.

Now that we know that State st is actually a monad, we’d like to make it an
instance of the Monad class. Unfortunately, the straightforward way of doing this
doesn’t work. We can’t write:

instance Monad (State st) where { ... }

This is because you cannot make instances out of non-fully-applied type synonyms.
Instead, what we need to do instead is convert the type synonym into a newtype, as:

newtype State st a = State (st -> (st, a))

Unfortunately, this means that we need to do some packing and unpacking of the
State constructor in the Monad instance declaration, but it’s not terribly difficult:

instance Monad (State state) where
return a = State (\state -> (state, a))
State run >>= action = State run’

where run’ st =
let (st’, a) = run st

State run’’ = action a
in run’’ st’

Now, we can write our mapTreeM function as:mapTreeM

mapTreeM :: (a -> State state b) -> Tree a ->
State state (Tree b)

mapTreeM f (Leaf a) = do
b <- f a
return (Leaf b)

mapTreeM f (Branch lhs rhs) = do
lhs’ <- mapTreeM f lhs
rhs’ <- mapTreeM f rhs
return (Branch lhs’ rhs’)

which is significantly cleaner than before. In fact, if we remove the type signature, we
get the more general type:

mapTreeM :: Monad m => (a -> m b) -> Tree a ->
m (Tree b)

9.3. A SIMPLE STATE MONAD 129

That is, mapTreeM can be run in any monad, not just our State monad.
Now, the nice thing about encapsulating the stateful aspect of the computation like

this is that we can provide functions to get and change the current state. These look
like: getState

putStategetState :: State state state
getState = State (\state -> (state, state))

putState :: state -> State state ()
putState new = State (_ -> (new, ()))

Here, getState is a monadic operation that takes the current state, passes it
through unchanged, and then returns it as the value. The putState function takes a
new state and produces an action that ignores the current state and inserts the new one.

Now, we can write our numberTree function as:

numberTree :: Tree a -> State Int (Tree (a, Int))
numberTree tree = mapTreeM number tree

where number v = do
cur <- getState
putState (cur+1)
return (v,cur)

Finally, we need to be able to run the action by providing an initial state:

runStateM :: State state a -> state -> a
runStateM (State f) st = snd (f st)

Now, we can provide an example Tree:

testTree =
Branch
(Branch

(Leaf ’a’)
(Branch
(Leaf ’b’)
(Leaf ’c’)))

(Branch
(Leaf ’d’)
(Leaf ’e’))

and number it:

State> runStateM (numberTree testTree) 1
Branch (Branch (Leaf (’a’,1)) (Branch (Leaf (’b’,2))

(Leaf (’c’,3)))) (Branch (Leaf (’d’,4))
(Leaf (’e’,5)))

130 CHAPTER 9. MONADS

This may seem like a large amount of work to do something simple. However,
note the new power of mapTreeM. We can also print out the leaves of the tree in a
left-to-right fashion as:

State> mapTreeM print testTree
’a’
’b’
’c’
’d’
’e’

This crucially relies on the fact that mapTreeM has the more general type involving
arbitrary monads – not just the state monad. Furthermore, we can write an action that
will make each leaf value equal to its old value as well as all the values preceeding:

fluffLeaves tree = mapTreeM fluff tree
where fluff v = do

cur <- getState
putState (v:cur)
return (v:cur)

and can see it in action:

State> runStateM (fluffLeaves testTree) []
Branch (Branch (Leaf "a") (Branch (Leaf "ba")

(Leaf "cba"))) (Branch (Leaf "dcba")
(Leaf "edcba"))

In fact, you don’t even need to write your own monad instance and datatype. All
this is built in to the Control.Monad.State module. There, our runStateM
is called evalState; our getState is called get; and our putState is called
put.

This module also contains a state transformer monad, which we will discuss in
Section 9.7.

9.4 Common Monads

It turns out that many of our favorite datatypes are actually monads themselves. Con-
sider, for instance, lists. They have a monad definition that looks something like:lists

instance Monad [] where
return x = [x]
l >>= f = concatMap f l
fail _ = []

9.4. COMMON MONADS 131

This enables us to use lists in do notation. For instance, given the definition:

cross l1 l2 = do
x <- l1
y <- l2
return (x,y)

we get a cross-product function:

Monads> cross "ab" "cde"
[(’a’,’d’),(’a’,’e’),(’a’,’f’),(’b’,’d’),(’b’,’e’),
(’b’,’f’)]

It is not a coincidence that this looks very much like the list comprehension form: list comprehensions

Prelude> [(x,y) | x <- "ab", y <- "def"]
[(’a’,’d’),(’a’,’e’),(’a’,’f’),(’b’,’d’),(’b’,’e’),
(’b’,’f’)]

List comprehension form is simply an abbreviated form of a monadic statement
using lists. In fact, in older versions of Haskell, the list comprehension form could be
used for any monad – not just lists. However, in the current version of Haskell, this is
no longer allowed.

The Maybe type is also a monad, with failure being represented as Nothing and Maybe
with success as Just. We get the following instance declaration:

instance Monad Maybe where
return a = Just a
Nothing >>= f = Nothing
Just x >>= f = f x
fail _ = Nothing

We can use the same cross product function that we did for lists on Maybes. This
is because the do notation works for any monad, and there’s nothing specific to lists
about the cross function.

Monads> cross (Just ’a’) (Just ’b’)
Just (’a’,’b’)
Monads> cross (Nothing :: Maybe Char) (Just ’b’)
Nothing
Monads> cross (Just ’a’) (Nothing :: Maybe Char)
Nothing
Monads> cross (Nothing :: Maybe Char)

(Nothing :: Maybe Char)
Nothing

132 CHAPTER 9. MONADS

What this means is that if we write a function (like searchAll from Section 8.4) searchAll
only in terms of monadic operators, we can use it with any monad, depending on what
we mean. Using real monadic functions (not do notation), the searchAll function
looks something like:

searchAll g@(Graph vl el) src dst
| src == dst = return [src]
| otherwise = search’ el
where search’ [] = fail "no path"

search’ ((u,v,_):es)
| src == u =

searchAll g v dst >>= \path ->
return (u:path)

| otherwise = search’ es

The type of this function is Monad m => Graph v e -> Int -> Int ->
m [Int]. This means that no matter what monad we’re using at the moment, this
function will perform the calculation. Suppose we have the following graph:

gr = Graph [(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]
[(0,1,’l’), (0,2,’m’), (1,3,’n’), (2,3,’m’)]

This represents a graph with four nodes, labelled a,b,c and d. There is an edge
from a to both b and c. There is also an edge from both b and c to d. Using the Maybe

monad, we can compute the path from a to d:

Monads> searchAll gr 0 3 :: Maybe [Int]
Just [0,1,3]

We provide the type signature, so that the interpreter knows what monad we’re
using. If we try to search in the opposite direction, there is no path. The inability to
find a path is represented as Nothing in the Maybe monad:

Monads> searchAll gr 3 0 :: Maybe [Int]
Nothing

Note that the string “no path” has disappeared since there’s no way for the Maybe

monad to record this.
If we perform the same impossible search in the list monad, we get the empty list,

indicating no path:

Monads> searchAll gr 3 0 :: [[Int]]
[]

9.4. COMMON MONADS 133

If we perform the possible search, we get back a list containing the first path:

Monads> searchAll gr 0 3 :: [[Int]]
[[0,1,3]]

You may have expected this function call to return all paths, but, as coded, it does
not. See Section 9.6 for more about using lists to represent nondeterminism. nondeterminism

If we use the IO monad, we can actually get at the error message, since IO knows
how to keep track of error messages:

Monads> searchAll gr 0 3 :: IO [Int]
Monads> it
[0,1,3]
Monads> searchAll gr 3 0 :: IO [Int]
*** Exception: user error
Reason: no path

In the first case, we needed to type it to get GHCi to actually evaluate the search.
There is one problem with this implementation of searchAll: if it finds an edge

that does not lead to a solution, it won’t be able to backtrack. This has to do with
the recursive call to searchAll inside of search’. Consider, for instance, what
happens if searchAll g v dst doesn’t find a path. There’s no way for this im-
plementation to recover. For instance, if we remove the edge from node b to node d,
we should still be able to find a path from a to d, but this algorithm can’t find it. We
define:

gr2 = Graph [(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]
[(0,1,’l’), (0,2,’m’), (2,3,’m’)]

and then try to search:

Monads> searchAll gr2 0 3
*** Exception: user error
Reason: no path

To fix this, we need a function like combine from our Computation class. We
will see how to do this in Section 9.6.

Exercises
Exercise 9.1 Verify that Maybe obeys the three monad laws.

Exercise 9.2 The type Either String is a monad that can keep track of errors. Write an
instance for it, and then try doing the search from this chapter using this monad.
Hint: Your instance declaration should begin: instance Monad (Either String)
where.

134 CHAPTER 9. MONADS

9.5 Monadic Combinators

The Monad/Control.Monad library contains a few very useful monadic combina-
tors, which haven’t yet been thoroughly discussed. The ones we will discuss in this
section, together with their types, are:

• (=<<) :: (a -> m b) -> m a -> m b

• mapM :: (a -> m b) -> [a] -> m [b]

• mapM :: (a -> m b) -> [a] -> m ()

• filterM :: (a -> m Bool) -> [a] -> m [a]

• foldM :: (a -> b -> m a) -> a -> [b] -> m a

• sequence :: [m a] -> m [a]

• sequence :: [m a] -> m ()

• liftM :: (a -> b) -> m a -> m b

• when :: Bool -> m () -> m ()

• join :: m (m a) -> m a

In the above, m is always assumed to be an instance of Monad.
In general, functions with an underscore at the end are equivalent to the ones with-

out, except that they do not return any value.
The =<< function is exactly the same as >>=, except it takes its arguments in the

opposite order. For instance, in the IO monad, we can write either of the following:

Monads> writeFile "foo" "hello world!" >>
(readFile "foo" >>= putStrLn)

hello world!
Monads> writeFile "foo" "hello world!" >>

(putStrLn =<< readFile "foo")
hello world!

The mapM, filterM and foldM are our old friends map, filter and foldrmapM

filterM
foldM

wrapped up inside of monads. These functions are incredibly useful (particularly
foldM) when working with monads. We can use mapM , for instance, to print a list of
things to the screen:

Monads> mapM_ print [1,2,3,4,5]
1
2
3
4
5

9.5. MONADIC COMBINATORS 135

We can use foldM to sum a list and print the intermediate sum at each step:

Monads> foldM (\a b ->
putStrLn (show a ++ "+" ++ show b ++

"=" ++ show (a+b)) >>
return (a+b)) 0 [1..5]

0+1=1
1+2=3
3+3=6
6+4=10
10+5=15
Monads> it
15

The sequence and sequence functions simply “execute” a list of actions. For sequence
instance:

Monads> sequence [print 1, print 2, print ’a’]
1
2
’a’
*Monads> it
[(),(),()]
*Monads> sequence_ [print 1, print 2, print ’a’]
1
2
’a’
*Monads> it
()

We can see that the underscored version doesn’t return each value, while the non-
underscored version returns the list of the return values.

The liftM function “lifts” a non-monadic function to a monadic function. (Do liftM
not confuse this with the lift function used for monad transformers in Section 9.7.)
This is useful for shortening code (among other things). For instance, we might want
to write a function that prepends each line in a file with its line number. We can do this
with:

numberFile :: FilePath -> IO ()
numberFile fp = do
text <- readFile fp
let l = lines text
let n = zipWith (\n t -> show n ++ ’ ’ : t) [1..] l
mapM_ putStrLn n

However, we can shorten this using liftM:

136 CHAPTER 9. MONADS

numberFile :: FilePath -> IO ()
numberFile fp = do
l <- lines ‘liftM‘ readFile fp
let n = zipWith (\n t -> show n ++ ’ ’ : t) [1..] l
mapM_ putStrLn n

In fact, you can apply any sort of (pure) processing to a file using liftM. For
instance, perhaps we also want to split lines into words; we can do this with:

...
w <- (map words . lines) ‘liftM‘ readFile fp
...

Note that the parentheses are required, since the (.) function has the same fixity
has ‘liftM‘.

Lifting pure functions into monads is also useful in other monads. For instance
liftM can be used to apply function inside of Just. For instance:

Monads> liftM (+1) (Just 5)
Just 6
*Monads> liftM (+1) Nothing
Nothing

The when function executes a monadic action only if a condition is met. So, if wewhen
only want to print non-empty lines:

Monads> mapM_ (\l -> when (not $ null l) (putStrLn l))
["","abc","def","","","ghi"]

abc
def
ghi

Of course, the same could be accomplished with filter, but sometimes when is
more convenient.

Finally, the join function is the monadic equivalent of concat on lists. In fact,join
when m is the list monad, join is exactly concat. In other monads, it accomplishes
a similar task:

Monads> join (Just (Just ’a’))
Just ’a’
Monads> join (Just (Nothing :: Maybe Char))
Nothing
Monads> join (Nothing :: Maybe (Maybe Char))
Nothing

9.6. MONADPLUS 137

Monads> join (return (putStrLn "hello"))
hello
Monads> return (putStrLn "hello")
Monads> join [[1,2,3],[4,5]]
[1,2,3,4,5]

These functions will turn out to be even more useful as we move on to more ad-
vanced topics in Chapter 10.

9.6 MonadPlus

Given only the >>= and return functions, it is impossible to write a function like
combine with type c a → c a → c a. However, such a function is so generally useful combine
that it exists in another class called MonadPlus. In addition to having a combine MonadPlus
function, instances of MonadPlus also have a “zero” element that is the identity
under the “plus” (i.e., combine) action. The definition is:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

In order to gain access to MonadPlus, you need to import the Monad module
(or Control.Monad in the hierarchical libraries).

In Section 9.4, we showed that Maybe and list are both monads. In fact, they Maybe

listsare also both instances of MonadPlus. In the case of Maybe, the zero element is
Nothing; in the case of lists, it is the empty list. The mplus operation on Maybe is
Nothing, if both elements are Nothing; otherwise, it is the first Just value. For
lists, mplus is the same as ++.

That is, the instance declarations look like:

instance MonadPlus Maybe where
mzero = Nothing
mplus Nothing y = y
mplus x _ = x

instance MonadPlus [] where
mzero = []
mplus x y = x ++ y

We can use this class to reimplement the search function we’ve been exploring,
such that it will explore all possible paths. The new function looks like:

searchAll2 g@(Graph vl el) src dst
| src == dst = return [src]

138 CHAPTER 9. MONADS

| otherwise = search’ el
where search’ [] = fail "no path"

search’ ((u,v,_):es)
| src == u =

(searchAll2 g v dst >>= \path ->
return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

Now, when we’re going through the edge list in search’, and we come across a
matching edge, not only do we explore this path, but we also continue to explore the
out-edges of the current node in the recursive call to search’.

The IO monad is not an instance of MonadPlus; we we’re not able to execute
the search with this monad. We can see that when using lists as the monad, we (a) get
all possible paths in gr and (b) get a path in gr2.

MPlus> searchAll2 gr 0 3 :: [[Int]]
[[0,1,3],[0,2,3]]
MPlus> searchAll2 gr2 0 3 :: [[Int]]
[[0,2,3]]

You might be tempted to implement this as:

searchAll2 g@(Graph vl el) src dst
| src == dst = return [src]
| otherwise = search’ el
where search’ [] = fail "no path"

search’ ((u,v,_):es)
| src == u = do

path <- searchAll2 g v dst
rest <- search’ es
return ((u:path) ‘mplus‘ rest)

| otherwise = search’ es

But note that this doesn’t do what we want. Here, if the recursive call to searchAll2
fails, we don’t try to continue and execute search’ es. The call to mplus must be
at the top level in order for it to work.

Exercises
Exercise 9.3 Suppose that we changed the order of arguments to mplus. I.e., the
matching case of search’ looked like:

search’ es ‘mplus‘
(searchAll2 g v dst >>= \path ->
return (u:path))

9.7. MONAD TRANSFORMERS 139

How would you expect this to change the results when using the list monad on gr?
Why?

9.7 Monad Transformers

Often we want to “piggyback” monads on top of each other. For instance, there might
be a case where you need access to both IO operations through the IO monad and
state functions through some state monad. In order to accomplish this, we introduce
a MonadTrans class, which essentially “lifts” the operations of one monad into an- MonadTrans
other. You can think of this as stacking monads on top of eachother. This class has a
simple method: lift. The class declaration for MonadTrans is: lift

class MonadTrans t where
lift :: Monad m => m a -> t m a

The idea here is that t is the outer monad and that m lives inside of it. In order to
execute a command of type Monad m => m a, we first lift it into the transformer.

The simplest example of a transformer (and arguably the most useful) is the state
transformer monad, which is a state monad wrapped around an arbitrary monad. Be- state monad
fore, we defined a state monad as:

newtype State state a = State (state -> (state, a))

Now, instead of using a function of type state -> (state, a) as the monad,
we assume there’s some other monad m and make the internal action into something of
type state -> m (state, a). This gives rise to the following definition for a
state transformer: state transformer

newtype StateT state m a =
StateT (state -> m (state, a))

For instance, we can think of m as IO. In this case, our state transformer monad is
able to execute actions in the IO monad. First, we make this an instance of MonadTrans:

instance MonadTrans (StateT state) where
lift m = StateT (\s -> do a <- m

return (s,a))

Here, lifting a function from the realm of m to the realm of StateT state simply
involves keeping the state (the s value) constant and executing the action.

Of course, we also need to make StateT a monad, itself. This is relatively
straightforward, provided that m is already a monad:

140 CHAPTER 9. MONADS

instance Monad m => Monad (StateT state m) where
return a = StateT (\s -> return (s,a))
StateT m >>= k = StateT (\s -> do
(s’, a) <- m s
let StateT m’ = k a
m’ s’)

fail s = StateT (_ -> fail s)

The idea behind the definition of return is that we keep the state constant and
simply return the state/a pair in the enclosed monad. Note that the use of return in
the definition of return refers to the enclosed monad, not the state transformer.

In the definition of bind, we create a new StateT that takes a state s as an ar-
gument. First, it applies this state to the first action (StateT m) and gets the new
state and answer as a result. It then runs the k action on this new state and gets a new
transformer. It finally applies the new state to this transformer. This definition is nearly
identical to the definition of bind for the standard (non-transformer) State monad
described in Section 9.3.

The fail function passes on the call to fail in the enclosed monad, since state
transformers don’t natively know how to deal with failure.

Of course, in order to actually use this monad, we need to provide function getT
, putT and evalStateT . These are analogous to getState, putState andgetT

putT

evalStateT

runStateM from Section 9.3:

getT :: Monad m => StateT s m s
getT = StateT (\s -> return (s, s))

putT :: Monad m => s -> StateT s m ()
putT s = StateT (_ -> return (s, ()))

evalStateT :: Monad m => StateT s m a -> s -> m a
evalStateT (StateT m) state = do
(s’, a) <- m state
return a

These functions should be straightforward. Note, however, that the result of evalStateT
is actually a monadic action in the enclosed monad. This is typical of monad trans-
formers: they don’t know how to actually run things in their enclosed monad (they
only know how to lift actions). Thus, what you get out is a monadic action in the
inside monad (in our case, IO), which you then need to run yourself.

We can use state transformers to reimplement a version of our mapTreeM function
from Section 9.3. The only change here is that when we get to a leaf, we print out the
value of the leaf; when we get to a branch, we just print out “Branch.”

mapTreeM action (Leaf a) = do
lift (putStrLn ("Leaf " ++ show a))

9.7. MONAD TRANSFORMERS 141

b <- action a
return (Leaf b)

mapTreeM action (Branch lhs rhs) = do
lift (putStrLn "Branch")
lhs’ <- mapTreeM action lhs
rhs’ <- mapTreeM action rhs
return (Branch lhs’ rhs’)

The only difference between this function and the one from Section 9.3 is the calls
to lift (putStrLn ...) as the first line. The lift tells us that we’re going to
be executing a command in an enclosed monad. In this case, the enclosed monad is
IO, since the command lifted is putStrLn.

The type of this function is relatively complex:

mapTreeM :: (MonadTrans t, Monad (t IO), Show a) =>
(a -> t IO a1) -> Tree a -> t IO (Tree a1)

Ignoring, for a second, the class constraints, this says that mapTreeM takes an
action and a tree and returns a tree. This just as before. In this, we require that t is
a monad transformer (since we apply lift in it); we require that t IO is a monad,
since we use putStrLn we know that the enclosed monad is IO; finally, we require
that a is an instance of show – this is simply because we use show to show the value
of leaves.

Now, we simply change numberTree to use this version of mapTreeM, and the
new versions of get and put, and we end up with:

numberTree tree = mapTreeM number tree
where number v = do

cur <- getT
putT (cur+1)
return (v,cur)

Using this, we can run our monad:

MTrans> evalStateT (numberTree testTree) 0
Branch
Branch
Leaf ’a’
Branch
Leaf ’b’
Leaf ’c’
Branch
Leaf ’d’
Leaf ’e’
*MTrans> it

142 CHAPTER 9. MONADS

Branch (Branch (Leaf (’a’,0))
(Branch (Leaf (’b’,1)) (Leaf (’c’,2))))
(Branch (Leaf (’d’,3)) (Leaf (’e’,4)))

One problem not specified in our discussion of MonadPlus is that our search
algorithm will fail to terminate on graphs with cycles. Consider:cycles

gr3 = Graph [(0, ’a’), (1, ’b’), (2, ’c’), (3, ’d’)]
[(0,1,’l’), (1,0,’m’), (0,2,’n’),
(1,3,’o’), (2,3,’p’)]

In this graph, there is a back edge from node b back to node a. If we attempt to run
searchAll2, regardless of what monad we use, it will fail to terminate. Moreover,
if we move this erroneous edge to the end of the list (and call this gr4), the result of
searchAll2 gr4 0 3 will contain an infinite number of paths: presumably we
only want paths that don’t contain cycles.

In order to get around this problem, we need to introduce state. Namely, we need
to keep track of which nodes we have visited, so that we don’t visit them again.

We can do this as follows:

searchAll5 g@(Graph vl el) src dst
| src == dst = do

visited <- getT
putT (src:visited)
return [src]

| otherwise = do
visited <- getT
putT (src:visited)
if src ‘elem‘ visited

then mzero
else search’ el

where
search’ [] = mzero
search’ ((u,v,_):es)

| src == u =
(do path <- searchAll5 g v dst

return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

Here, we implicitly use a state transformer (see the calls to getT and putT) to
keep track of visited states. We only continue to recurse, when we encounter a state we
haven’t yet visited. Futhermore, when we recurse, we add the current state to our set
of visited states.

Now, we can run the state transformer and get out only the correct paths, even on
the cyclic graphs:

9.7. MONAD TRANSFORMERS 143

MTrans> evalStateT (searchAll5 gr3 0 3) [] :: [[Int]]
[[0,1,3],[0,2,3]]
MTrans> evalStateT (searchAll5 gr4 0 3) [] :: [[Int]]
[[0,1,3],[0,2,3]]

Here, the empty list provided as an argument to evalStateT is the initial state
(i.e., the initial visited list). In our case, it is empty.

We can also provide an execStateT method that, instead of returning a result,
returns the final state. This function looks like:

execStateT :: Monad m => StateT s m a -> s -> m s
execStateT (StateT m) state = do
(s’, a) <- m state
return s’

This is not so useful in our case, as it will return exactly the reverse of evalStateT
(try it and find out!), but can be useful in general (if, for instance, we need to know how
many numbers are used in numberTree).

Exercises

Exercise 9.4 Write a function searchAll6, based on the code for searchAll2,
that, at every entry to the main function (not the recursion over the edge list), prints the
search being conducted. For instance, the output generated for searchAll6 gr 0
3 should look like:

Exploring 0 -> 3
Exploring 1 -> 3
Exploring 3 -> 3
Exploring 2 -> 3
Exploring 3 -> 3
MTrans> it
[[0,1,3],[0,2,3]]

In order to do this, you will have to define your own list monad transformer and make
appropriate instances of it.

Exercise 9.5 Combine the searchAll5 function (from this section) with the searchAll6
function (from the previous exercise) into a single function called searchAll7. This
function should perform IO as in searchAll6 but should also keep track of state
using a state transformer.

144 CHAPTER 9. MONADS

9.8 Parsing Monads

It turns out that a certain class of parsers are all monads. This makes the construction
of parsing libraries in Haskell very clean. In this chapter, we begin by building our own
(small) parsing library in Section 9.8.1 and then introduce the Parsec parsing library in
Section 9.8.2.

9.8.1 A Simple Parsing Monad

Consider the task of parsing. A simple parsing monad is much like a state monad,
where the state is the unparsed string. We can represent this exactly as:

newtype Parser a = Parser
{ runParser :: String -> Either String (String, a) }

We again use Left err to be an error condition. This yields standard instances
of Monad and MonadPlus:

instance Monad Parser where
return a = Parser (\xl -> Right (xl,a))
fail s = Parser (\xl -> Left s)
Parser m >>= k = Parser $ \xl ->
case m xl of

Left s -> Left s
Right (xl’, a) ->

let Parser n = k a
in n xl’

instance MonadPlus Parser where
mzero = Parser (\xl -> Left "mzero")
Parser p ‘mplus‘ Parser q = Parser $ \xl ->
case p xl of

Right a -> Right a
Left err -> case q xl of

Right a -> Right a
Left _ -> Left err

Now, we want to build up a library of paring “primitives.” The most basic primitiveprimitives
is a parser that will read a specific character. This function looks like:

char :: Char -> Parser Char
char c = Parser char’

where char’ [] = Left ("expecting " ++ show c ++
" got EOF")

char’ (x:xs)
| x == c = Right (xs, c)

9.8. PARSING MONADS 145

| otherwise = Left ("expecting " ++
show c ++ " got " ++
show x)

Here, the parser succeeds only if the first character of the input is the expected
character.

We can use this parser to build up a parser for the string “Hello”:

helloParser :: Parser String
helloParser = do
char ’H’
char ’e’
char ’l’
char ’l’
char ’o’
return "Hello"

This shows how easy it is to combine these parsers. We don’t need to worry about
the underlying string – the monad takes care of that for us. All we need to do is
combine these parser primatives. We can test this parser by using runParser and by runParser
supplying input:

Parsing> runParser helloParser "Hello"
Right ("","Hello")
Parsing> runParser helloParser "Hello World!"
Right (" World!","Hello")
Parsing> runParser helloParser "hello World!"
Left "expecting ’H’ got ’h’"

We can have a slightly more general function, which will match any character fitting
a description:

matchChar :: (Char -> Bool) -> Parser Char
matchChar c = Parser matchChar’

where matchChar’ [] =
Left ("expecting char, got EOF")

matchChar’ (x:xs)
| c x = Right (xs, x)
| otherwise =

Left ("expecting char, got " ++
show x)

Using this, we can write a case-insensitive “Hello” parser:

146 CHAPTER 9. MONADS

ciHelloParser = do
c1 <- matchChar (‘elem‘ "Hh")
c2 <- matchChar (‘elem‘ "Ee")
c3 <- matchChar (‘elem‘ "Ll")
c4 <- matchChar (‘elem‘ "Ll")
c5 <- matchChar (‘elem‘ "Oo")
return [c1,c2,c3,c4,c5]

Of course, we could have used something like matchChar ((==’h’) . toLower),
but the above implementation works just as well. We can test this function:

Parsing> runParser ciHelloParser "hELlO world!"
Right (" world!","hELlO")

Finally, we can have a function, which will match any character:

anyChar :: Parser Char
anyChar = Parser anyChar’

where anyChar’ [] =
Left ("expecting character, got EOF")

anyChar’ (x:xs) = Right (xs, x)

On top of these primitives, we usually build some combinators. The many combi-many
nator, for instance, will take a parser that parses entities of type a and will make it into
a parser that parses entities of type [a] (this is a Kleene-star operator):

many :: Parser a -> Parser [a]
many (Parser p) = Parser many’

where many’ xl =
case p xl of
Left err -> Right (xl, [])
Right (xl’,a) ->

let Right (xl’’, rest) = many’ xl’
in Right (xl’’, a:rest)

The idea here is that first we try to apply the given parser, p. If this fails, we succeed
but return the empty list. If p succeeds, we recurse and keep trying to apply p until it
fails. We then return the list of successes we’ve accumulated.

In general, there would be many more functions of this sort, and they would be hid-
den away in a library, so that users couldn’t actually look inside the Parser type.
However, using them, you could build up, for instance, a parser that parses (non-
negative) integers:

9.8. PARSING MONADS 147

int :: Parser Int
int = do
t1 <- matchChar isDigit
tr <- many (matchChar isDigit)
return (read (t1:tr))

In this function, we first match a digit (the isDigit function comes from the
module Char/Data.Char) and then match as many more digits as we can. We then
read the result and return it. We can test this parser as before:

Parsing> runParser int "54"
Right ("",54)
*Parsing> runParser int "54abc"
Right ("abc",54)
*Parsing> runParser int "a54abc"
Left "expecting char, got ’a’"

Now, suppose we want to parse a Haskell-style list of Ints. This becomes somewhat
difficult because, at some point, we’re either going to parse a comma or a close brace,
but we don’t know when this will happen. This is where the fact that Parser is an
instance of MonadPlus comes in handy: first we try one, then we try the other.

Consider the following code:

intList :: Parser [Int]
intList = do
char ’[’
intList’ ‘mplus‘ (char ’]’ >> return [])
where intList’ = do

i <- int
r <- (char ’,’ >> intList’) ‘mplus‘

(char ’]’ >> return [])
return (i:r)

The first thing this code does is parse and open brace. Then, using mplus, it tries mplus
one of two things: parsing using intList’, or parsing a close brace and returning an
empty list.

The intList’ function assumes that we’re not yet at the end of the list, and so it
first parses an int. It then parses the rest of the list. However, it doesn’t know whether
we’re at the end yet, so it again uses mplus. On the one hand, it tries to parse a comma
and then recurse; on the other, it parses a close brace and returns the empty list. Either
way, it simply prepends the int it parsed itself to the beginning.

One thing that you should be careful of is the order in which you supply arguments
to mplus. Consider the following parser:

148 CHAPTER 9. MONADS

tricky =
mplus (string "Hal") (string "Hall")

You might expect this parser to parse both the words “Hal” and “Hall;” however, it
only parses the former. You can see this with:

Parsing> runParser tricky "Hal"
Right ("","Hal")
Parsing> runParser tricky "Hall"
Right ("l","Hal")

This is because it tries to parse “Hal,” which succeeds, and then it doesn’t bother
trying to parse “Hall.”

You can attempt to fix this by providing a parser primitive, which detects end-of-file
(really, end-of-string) as:

eof :: Parser ()
eof = Parser eof’

where eof’ [] = Right ([], ())
eof’ xl = Left ("Expecting EOF, got " ++

show (take 10 xl))

You might then rewrite tricky using eof as:

tricky2 = do
s <- mplus (string "Hal") (string "Hall")
eof
return s

But this also doesn’t work, as we can easily see:

Parsing> runParser tricky2 "Hal"
Right ("",())
Parsing> runParser tricky2 "Hall"
Left "Expecting EOF, got \"l\""

This is because, again, the mplus doesn’t know that it needs to parse the whole
input. So, when you provide it with “Hall,” it parses just “Hal” and leaves the last “l”
lying around to be parsed later. This causes eof to produce an error message.

The correct way to implement this is:

tricky3 =
mplus (do s <- string "Hal"

9.8. PARSING MONADS 149

eof
return s)

(do s <- string "Hall"
eof
return s)

We can see that this works:

Parsing> runParser tricky3 "Hal"
Right ("","Hal")
Parsing> runParser tricky3 "Hall"
Right ("","Hall")

This works precisely because each side of the mplus knows that it must read the
end.

In this case, fixing the parser to accept both “Hal” and “Hall” was fairly simple,
due to the fact that we assumed we would be reading an end-of-file immediately af-
terwards. Unfortunately, if we cannot disambiguate immediately, life becomes signifi-
cantly more complicated. This is a general problem in parsing, and has little to do with
monadic parsing. The solution most parser libraries (e.g., Parsec, see Section 9.8.2)
have adopted is to only recognize “LL(1)” grammars: that means that you must be able
to disambiguate the input with a one token look-ahead.

Exercises
Exercise 9.6 Write a parser intListSpace that will parse int lists but will allow
arbitrary white space (spaces, tabs or newlines) between the commas and brackets.

Given this monadic parser, it is fairly easy to add information regarding source
position. For instance, if we’re parsing a large file, it might be helpful to report the
line number on which an error occurred. We could do this simply by extending the line numbers
Parser type and by modifying the instances and the primitives:

newtype Parser a = Parser
{ runParser :: Int -> String ->

Either String (Int, String, a) }

instance Monad Parser where
return a = Parser (\n xl -> Right (n,xl,a))
fail s = Parser (\n xl -> Left (show n ++

": " ++ s))
Parser m >>= k = Parser $ \n xl ->
case m n xl of

Left s -> Left s
Right (n’, xl’, a) ->

let Parser m2 = k a

150 CHAPTER 9. MONADS

in m2 n’ xl’

instance MonadPlus Parser where
mzero = Parser (\n xl -> Left "mzero")
Parser p ‘mplus‘ Parser q = Parser $ \n xl ->
case p n xl of
Right a -> Right a
Left err -> case q n xl of

Right a -> Right a
Left _ -> Left err

matchChar :: (Char -> Bool) -> Parser Char
matchChar c = Parser matchChar’
where matchChar’ n [] =

Left ("expecting char, got EOF")
matchChar’ n (x:xs)

| c x =
Right (n+if x==’\n’ then 1 else 0

, xs, x)
| otherwise =

Left ("expecting char, got " ++
show x)

The definitions for char and anyChar are not given, since they can be written in
terms of matchChar. The many function needs to be modified only to include the
new state.

Now, when we run a parser and there is an error, it will tell us which line number
contains the error:

Parsing2> runParser helloParser 1 "Hello"
Right (1,"","Hello")
Parsing2> runParser int 1 "a54"
Left "1: expecting char, got ’a’"
Parsing2> runParser intList 1 "[1,2,3,a]"
Left "1: expecting ’]’ got ’1’"

We can use the intListSpace parser from the prior exercise to see that this does
in fact work:

Parsing2> runParser intListSpace 1
"[1 ,2 , 4 \n\n ,a\n]"

Left "3: expecting char, got ’a’"
Parsing2> runParser intListSpace 1

"[1 ,2 , 4 \n\n\n ,a\n]"
Left "4: expecting char, got ’a’"
Parsing2> runParser intListSpace 1

9.8. PARSING MONADS 151

"[1 ,\n2 , 4 \n\n\n ,a\n]"
Left "5: expecting char, got ’a’"

We can see that the line number, on which the error occurs, increases as we add
additional newlines before the erroneous “a”.

9.8.2 Parsec

As you continue developing your parser, you might want to add more and more fea-
tures. Luckily, Graham Hutton and Daan Leijen have already done this for us in the
Parsec library. This section is intended to be an introduction to the Parsec library; it by
no means covers the whole library, but it should be enough to get you started.

Like our libarary, Parsec provides a few basic functions to build parsers from char-
acters. These are: char, which is the same as our char; anyChar, which is the same char

anyCharas our anyChar; satisfy, which is the same as our matchChar; oneOf, which
satisfy

oneOf

takes a list of Chars and matches any of them; and noneOf, which is the opposite of

noneOf

oneOf.
The primary function Parsec uses to run a parser is parse. However, in addition to

parsea parser, this function takes a string that represents the name of the file you’re parsing.
This is so it can give better error messages. We can try parsing with the above functions:

ParsecI> parse (char ’a’) "stdin" "a"
Right ’a’
ParsecI> parse (char ’a’) "stdin" "ab"
Right ’a’
ParsecI> parse (char ’a’) "stdin" "b"
Left "stdin" (line 1, column 1):
unexpected "b"
expecting "a"
ParsecI> parse (char ’H’ >> char ’a’ >> char ’l’)

"stdin" "Hal"
Right ’l’
ParsecI> parse (char ’H’ >> char ’a’ >> char ’l’)

"stdin" "Hap"
Left "stdin" (line 1, column 3):
unexpected "p"
expecting "l"

Here, we can see a few differences between our parser and Parsec: first, the rest
of the string isn’t returned when we run parse. Second, the error messages produced
are much better.

In addition to the basic character parsing functions, Parsec provides primitives for:
spaces, which is the same as ours; space which parses a single space; letter, spaces

space

letter

which parses a letter; digit, which parses a digit; string, which is the same as

digit

string

ours; and a few others.
We can write our int and intList functions in Parsec as:

152 CHAPTER 9. MONADS

int :: CharParser st Int
int = do
i1 <- digit
ir <- many digit
return (read (i1:ir))

intList :: CharParser st [Int]
intList = do
char ’[’
intList’ ‘mplus‘ (char ’]’ >> return [])
where intList’ = do

i <- int
r <- (char ’,’ >> intList’) ‘mplus‘

(char ’]’ >> return [])
return (i:r)

First, note the type signatures. The st type variable is simply a state variable that
we are not using. In the int function, we use the many function (built in to Parsec)
together with the digit function (also built in to Parsec). The intList function is
actually identical to the one we wrote before.

Note, however, that using mplus explicitly is not the preferred method of com-
bining parsers: Parsec provides a <|> function that is a synonym of mplus, but that
looks nicer:

intList :: CharParser st [Int]
intList = do
char ’[’
intList’ <|> (char ’]’ >> return [])
where intList’ = do

i <- int
r <- (char ’,’ >> intList’) <|>

(char ’]’ >> return [])
return (i:r)

We can test this:

ParsecI> parse intList "stdin" "[3,5,2,10]"
Right [3,5,2,10]
ParsecI> parse intList "stdin" "[3,5,a,10]"
Left "stdin" (line 1, column 6):
unexpected "a"
expecting digit

In addition to these basic combinators, Parsec provides a few other useful ones:

9.8. PARSING MONADS 153

• choice takes a list of parsers and performs an or operation (<|>) between all
of them.

• option takes a default value of type a and a parser that returns something of
type a. It then tries to parse with the parser, but it uses the default value as the
return, if the parsing fails.

• optional takes a parser that returns () and optionally runs it.

• between takes three parsers: an open parser, a close parser and a between
parser. It runs them in order and returns the value of the between parser. This
can be used, for instance, to take care of the brackets on our intList parser.

• notFollowedBy takes a parser and returns one that succeeds only if the given
parser would have failed.

Suppose we want to parse a simple calculator language that includes only plus
and times. Furthermore, for simplicity, assume each embedded expression must be
enclosed in parentheses. We can give a datatype for this language as:

data Expr = Value Int
| Expr :+: Expr
| Expr :*: Expr
deriving (Eq, Ord, Show)

And then write a parser for this language as:

parseExpr :: Parser Expr
parseExpr = choice
[do i <- int; return (Value i)
, between (char ’(’) (char ’)’) $ do

e1 <- parseExpr
op <- oneOf "+*"
e2 <- parseExpr
case op of
’+’ -> return (e1 :+: e2)
’*’ -> return (e1 :*: e2)

]

Here, the parser alternates between two options (we could have used <|>, but I
wanted to show the choice combinator in action). The first simply parses an int and
then wraps it up in the Value constructor. The second option uses between to parse
text between parentheses. What it parses is first an expression, then one of plus or
times, then another expression. Depending on what the operator is, it returns either e1
:+: e2 or e1 :*: e2.

We can modify this parser, so that instead of computing an Expr, it simply com-
putes the value:

154 CHAPTER 9. MONADS

parseValue :: Parser Int
parseValue = choice
[int
,between (char ’(’) (char ’)’) $ do

e1 <- parseValue
op <- oneOf "+*"
e2 <- parseValue
case op of

’+’ -> return (e1 + e2)
’*’ -> return (e1 * e2)

]

We can use this as:

ParsecI> parse parseValue "stdin" "(3*(4+3))"
Right 21

Now, suppose we want to introduce bindings into our language. That is, we wantbindings
to also be able to say “let x = 5 in” inside of our expressions and then use the variables
we’ve defined. In order to do this, we need to use the getState and setState (orgetState

setState updateState) functions built in to Parsec.
updateState

parseValueLet :: CharParser (FiniteMap Char Int) Int
parseValueLet = choice
[int
, do string "let "

c <- letter
char ’=’
e <- parseValueLet
string " in "
updateState (\fm -> addToFM fm c e)
parseValueLet

, do c <- letter
fm <- getState
case lookupFM fm c of
Nothing -> unexpected ("variable " ++ show c ++

" unbound")
Just i -> return i

, between (char ’(’) (char ’)’) $ do
e1 <- parseValueLet
op <- oneOf "+*"
e2 <- parseValueLet
case op of

’+’ -> return (e1 + e2)

9.8. PARSING MONADS 155

’*’ -> return (e1 * e2)
]

The int and recursive cases remain the same. We add two more cases, one to deal
with let-bindings, the other to deal with usages.

In the let-bindings case, we first parse a “let” string, followed by the character we’re
binding (the letter function is a Parsec primitive that parses alphabetic characters),
followed by it’s value (a parseValueLet). Then, we parse the “ in ” and update the
state to include this binding. Finally, we continue and parse the rest.

In the usage case, we simply parse the character and then look it up in the state.
However, if it doesn’t exist, we use the Parsec primitive unexpected to report an
error.

We can see this parser in action using the runParser command, which enables runParser
us to provide an initial state:

ParsecI> runParser parseValueLet emptyFM "stdin"
"let c=5 in ((5+4)*c)"

Right 45
*ParsecI> runParser parseValueLet emptyFM "stdin"

"let c=5 in ((5+4)*let x=2 in (c+x))"
Right 63
*ParsecI> runParser parseValueLet emptyFM "stdin"

"((let x=2 in 3+4)*x)"
Right 14

Note that the bracketing does not affect the definitions of the variables. For in-
stance, in the last example, the use of “x” is, in some sense, outside the scope of the
definition. However, our parser doesn’t notice this, since it operates in a strictly left-
to-right fashion. In order to fix this omission, bindings would have to be removed (see
the exercises).

Exercises
Exercise 9.7 Modify the parseValueLet parser, so that it obeys bracketing. In
order to do this, you will need to change the state to something like FiniteMap
Char [Int], where the [Int] is a stack of definitions.

156 CHAPTER 9. MONADS

Chapter 10

Advanced Techniques

10.1 Exceptions

10.2 Mutable Arrays

10.3 Mutable References

10.4 The ST Monad

10.5 Concurrency

10.6 Regular Expressions

10.7 Dynamic Types

157

158 CHAPTER 10. ADVANCED TECHNIQUES

Appendix A

Brief Complexity Theory

Complexity Theory is the study of how long a program will take to run, depending on
the size of its input. There are many good introductory books to complexity theory and
the basics are explained in any good algorithms book. I’ll keep the discussion here to
a minimum.

The idea is to say how well a program scales with more data. If you have a program
that runs quickly on very small amounts of data but chokes on huge amounts of data,
it’s not very useful (unless you know you’ll only be working with small amounts of
data, of course). Consider the following Haskell function to return the sum of the
elements in a list:

sum [] = 0
sum (x:xs) = x + sum xs

How long does it take this function to complete? That’s a very difficult question; it
would depend on all sorts of things: your processor speed, your amount of memory, the
exact way in which the addition is carried out, the length of the list, how many other
programs are running on your computer, and so on. This is far too much to deal with, so
we need to invent a simpler model. The model we use is sort of an arbitrary “machine
step.” So the question is “how many machine steps will it take for this program to
complete?” In this case, it only depends on the length of the input list.

If the input list is of length 0, the function will take either 0 or 1 or 2 or some very
small number of machine steps, depending exactly on how you count them (perhaps 1
step to do the pattern matching and 1 more to return the value 0). What if the list is of
length 1. Well, it would take however much time the list of length 0 would take, plus a
few more steps for doing the first (and only element).

If the input list is of length n, it will take however many steps an empty list would
take (call this value y) and then, for each element it would take a certain number of
steps to do the addition and the recursive call (call this number x). Then, the total time
this function will take is nx + y since it needs to do those additions n many times.
These x and y values are called constant values, since they are independent of n, and
actually dependent only on exactly how we define a machine step, so we really don’t

159

160 APPENDIX A. BRIEF COMPLEXITY THEORY

want to consider them all that important. Therefore, we say that the complexity of this
sum function is O(n) (read “order n”). Basically saying something is O(n) means that
for some constant factors x and y, the function takes nx+y machine steps to complete.

Consider the following sorting algorithm for lists (commonly called “insertion
sort”):

sort [] = []
sort [x] = [x]
sort (x:xs) = insert (sort xs)

where insert [] = [x]
insert (y:ys) | x <= y = x : y : ys

| otherwise = y : insert ys

The way this algorithm works is as follow: if we want to sort an empty list or a list
of just one element, we return them as they are, as they are already sorted. Otherwise,
we have a list of the form x:xs. In this case, we sort xs and then want to insert x
in the appropriate location. That’s what the insert function does. It traverses the
now-sorted tail and inserts x wherever it naturally fits.

Let’s analyze how long this function takes to complete. Suppose it takes f(n) stepts
to sort a list of length n. Then, in order to sort a list of n-many elements, we first have
to sort the tail of the list first, which takes f(n−1) time. Then, we have to insert x into
this new list. If x has to go at the end, this will take O(n − 1) = O(n) steps. Putting
all of this together, we see that we have to do O(n) amount of work O(n) many times,
which means that the entire complexity of this sorting algorithm is O(n2). Here, the
squared is not a constant value, so we cannot throw it out.

What does this mean? Simply that for really long lists, the sum function won’t take
very long, but that the sort function will take quite some time. Of course there are
algorithms that run much more slowly that simply O(n2) and there are ones that run
more quickly than O(n).

Consider the random access functions for lists and arrays. In the worst case, ac-
cessing an arbitrary element in a list of length n will take O(n) time (think about
accessing the last element). However with arrays, you can access any element imme-
diately, which is said to be in constant time, or O(1), which is basically as fast an any
algorithm can go.

There’s much more in complexity theory than this, but this should be enough to
allow you to understand all the discussions in this tutorial. Just keep in mind that O(1)
is faster than O(n) is faster than O(n2), etc.

Appendix B

Recursion and Induction

Informally, a function is recursive if its definition depends on itself. The prototypical
example is factorial, whose definition is:

fact(n) =

{

1 n = 0
n ∗ fact(n − 1) n > 0

Here, we can see that in order to calculate fact(5), we need to calculate fact(4),
but in order to calculatefact(4), we need to calculate fact(3), and so on.

Recursive function definitions always contain a number of non-recursive base cases
and a number of recursive cases. In the case of factorial, we have one of each. The
base case is when n = 0 and the recursive case is when n > 0.

One can actually think of the natural numbers themselves as recursive (in fact, if
you ask set theorists about this, they’ll say this is how it is). That is, there is a zero
element and then for every element, it has a successor. That is 1 = succ(0), 2 =
succ(1), . . . , 573 = succ(573), . . . and so on forever. We can actually implement this
system of natural numbers in Haskell:

data Nat = Zero | Succ Nat

This is a recursive type definition. Here, we represent one as Succ Zero and
three as Succ (Succ (Succ Zero)). One thing we might want to do is be able
to convert back and forth beween Nats and Ints. Clearly, we can write a base case as:

natToInt Zero = 0

In order to write the recursive case, we realize that we’re going to have something
of the form Succ n. We can make the assumption that we’ll be able to take n and
produce an Int. Assuming we can do this, all we need to do is add one to this result.
This gives rise to our recursive case:

natToInt (Succ n) = natToInt n + 1

161

162 APPENDIX B. RECURSION AND INDUCTION

There is a close connection between recursion and mathematical induction. Induc-
tion is a proof technique which typically breaks problems down into base cases and
“inductive” cases, very analogous to our analysis of recursion.

Let’s say we want to prove the statement n! ≥ n for all n ≥ 0. First we formulate
a base case: namely, we wish to prove the statement when n = 0. When n = 0, n! = 1
by definition. Since n! = 1 > 0 = n, we get that 0! ≥ 0 as desired.

Now, suppose that n > 0. Then n = k + 1 for some value k. We now invoke the
inductive hypothesis and claim that the statement holds for n = k. That is, we assume
that k! ≥ k. Now, we use k to formate the statement for our value of n. That is, n! ≥ n
if and only iff (k + 1)! ≥ (k + 1). We now apply the definition of factorial and get
(k + 1)! = (k + 1) ∗ k!. Now, we know k! ≥ k, so (k + 1) ∗ k! ≥ k + 1 if and only if
k + 1 ≥ 1. But we know that k ≥ 0, which means k + 1 ≥ 1. Thus it is proven.

It may seem a bit counter-intuitive that we are assuming that the claim is true for k
in our proof that it is true for n. You can think of it like this: we’ve proved the statement
for the case when n = 0. Now, we know it’s true for n = 0 so using this we use our
inductive argument to show that it’s true for n = 1. Now, we know that it is true for
n = 1 so we reuse our inductive argument to show that it’s true for n = 2. We can
continue this argument as long as we want and then see that it’s true for all n.

It’s much like pushing down dominoes. You know that when you push down the
first domino, it’s going to knock over the second one. This, in turn will knock over the
third, and so on. The base case is like pushing down the first domino, and the inductive
case is like showing that pushing down domino k will cause the k + 1st domino to fall.

In fact, we can use induction to prove that our natToInt function does the right
thing. First we prove the base case: does natToInt Zero evaluate to 0? Yes, obvi-
ously it does. Now, we can assume that natToInt n evaluates to the correct value
(this is the inductive hypothesis) and ask whether natToInt (Succ n) produces
the correct value. Again, it is obvious that it does, by simply looking at the definition.

Let’s consider a more complex example: addition of Nats. We can write this con-
cisely as:

addNat Zero m = m
addNat (Succ n) m = addNat n (Succ m)

Now, let’s prove that this does the correct thing. First, as the base case, suppose the
first argument is Zero. We know that 0 + m = m regardless of what m is; thus in the
base case the algorithm does the correct thing. Now, suppose that addNat n m does
the correct thing for all m and we want to show that addNat (Succ n) m does the
correct thing. We know that (n + 1) + m = n + (m + 1) and thus since addNat
n (Succ m) does the correct thing (by the inductive hypothesis), our program is
correct.

Appendix C

Solutions To Exercises

Solution 3.1
It binds more tightly; actually, function application binds more tightly than anything
else. To see this, we can do something like:

Prelude> sqrt 3 * 3
5.19615

If multiplication bound more tightly, the result would have been 3.

Solution 3.2
Solution: snd (fst ((1,’a’),"foo")). This is because first we want to take
the first half the the tuple: (1,’a’) and then out of this we want to take the second
half, yielding just ’a’.

If you tried fst (snd ((1,’a’),"foo")) you will have gotten a type error.
This is because the application of snd will leave you with fst "foo". However, the
string “foo” isn’t a tuple, so you cannot apply fst to it.

Solution 3.3
Solution: map Char.isLower ”aBCde”

Solution 3.4
Solution: length (filter Char.isLower ”aBCde”)

Solution 3.5
foldr max 0 [5,10,2,8,1]. You could also use foldl. The foldr case is easier to explain:
we replace each cons with an application of max and the empty list with 0. Thus, the
inner-most application will take the maximum of 0 and the last element of the list (if
it exists). Then, the next-most inner application will return the maximum of what-
ever was the maximum before and the second-to-last element. This will continue on,
carrying to current maximum all the way back to the beginning of the list.

163

164 APPENDIX C. SOLUTIONS TO EXERCISES

In the foldl case, we can think of this as looking at each element in the list in order.
We start off our “state” with 0. We pull off the first element and check to see if it’s
bigger than our current state. If it is, we replace our current state with that number and
the continue. This happens for each element and thus eventually returns the maximal
element.

Solution 3.6
fst (head (tail [(5,’b’),(1,’c’),(6,’a’)]))

Solution 3.7
We can define a fibonacci function as:

fib 1 = 1
fib 2 = 1
fib n = fib (n-1) + fib (n-2)

We could also write it using explicit if statements, like:

fib n =
if n == 1 || n == 2
then 1
else fib (n-1) + fib (n-2)

Either is acceptable, but the first is perhaps more natural in Haskell.

Solution 3.8
We can define:

a ∗ b =

{

a b = 1
a + a ∗ (b − 1) otherwise

And then type out code:

mult a 1 = a
mult a b = a + mult a (b-1)

Note that it doesn’t matter that of a and b we do the recursion on. We could just as
well have defined it as:

mult 1 b = b
mult a b = b + mult (a-1) b

Solution 3.9
We can define my map as:

165

my_map f [] = []
my_map f (x:xs) = f x : my_map f xs

Recall that the my map function is supposed to apply a function f to every element
in the list. In the case that the list is empty, there are no elements to apply the function
to, so we just return the empty list.

In the case that the list is non-empty, it is an element x followed by a list xs.
Assuming we’ve already properly applied my map to xs, then all we’re left to do is
apply f to x and then stick the results together. This is exactly what the second line
does.

Solution 3.10
The code below appears in Numbers.hs. The only tricky parts are the recursive calls
in getNums and showFactorials.

module Main
where

import IO

main = do
nums <- getNums
putStrLn ("The sum is " ++ show (sum nums))
putStrLn ("The product is " ++ show (product nums))
showFactorials nums

getNums = do
putStrLn "Give me a number (or 0 to stop):"
num <- getLine
if read num == 0
then return []
else do rest <- getNums

return ((read num :: Int):rest)

showFactorials [] = return ()
showFactorials (x:xs) = do
putStrLn (show x ++ " factorial is " ++

show (factorial x))
showFactorials xs

factorial 1 = 1
factorial n = n * factorial (n-1)

The idea for getNums is just as spelled out in the hint. For showFactorials,
we consider first the recursive call. Suppose we have a list of numbers, the first of

166 APPENDIX C. SOLUTIONS TO EXERCISES

which is x. First we print out the string showing the factorial. Then we print out the
rest, hence the recursive call. But what should we do in the case of the empty list?
Clearly we are done, so we don’t need to do anything at all, so we simply return
().

Note that this must be return () instead of just () because if we simply wrote
showFactorials [] = () then this wouldn’t be an IO action, as it needs to be.
For more clarification on this, you should probably just keep reading the tutorial.

Solution 4.1 1.

String or [Char]

2. type error: lists are homogenous

3. Num a ⇒ (a,Char)

4. Int

5. type error: cannot add values of different types

Solution 4.2
The types:

1. (a, b)− > b

2. [a]− > a

3. [a]− > Bool

4. [a]− > a

5. [[a]]− > a

Solution 4.3
The types:

1. a− > [a]. This function takes an element and returns the list containing only that
element.

2. a− > b− > b− > (a, [b]). The second and third argument must be of the same
type, since they go into the same list. The first element can be of any type.

3. Num a => a− > a. Since we apply (+) to a, it must be an instance of Num.

4. a− > String. This ignores the first argument, so it can be any type.

5. (Char− > a)− > a. In this expression, x must be a function which takes a Char

as an argument. We don’t know anything about what it produces, though, so we
call it a.

167

6. Type error. Here, we assume x has type a. But x is applied to itself, so it must
have type b− > c. But then it must have type (b− > c)− > c, but then it must
have type ((b− > c)− > c)− > c and so on, leading to an infinite type.

7. Num a => a− > a. Again, since we apply (+), this must be an instance of
Num.

Solution 4.4
The definitions will be something like:

data Triple a b c = Triple a b c

tripleFst (Triple x y z) = x
tripleSnd (Triple x y z) = y
tripleThr (Triple x y z) = z

Solution 4.5
The code, with type signatures, is:

data Quadruple a b = Quadruple a a b b

firstTwo :: Quadruple a b -> [a]
firstTwo (Quadruple x y z t) = [x,y]

lastTwo :: Quadruple a b -> [b]
lastTwo (Quadruple x y z t) = [z,t]

We note here that there are only two type variables, a and b associated with
Quadruple.

Solution 4.6
The code:

data Tuple a b c d e = One a
| Two a b
| Three a b c
| Four a b c d

tuple1 (One a) = Just a
tuple1 (Two a b) = Just a
tuple1 (Three a b c) = Just a
tuple1 (Four a b c d) = Just a

tuple2 (One a) = Nothing
tuple2 (Two a b) = Just b
tuple2 (Three a b c) = Just b

168 APPENDIX C. SOLUTIONS TO EXERCISES

tuple2 (Four a b c d) = Just b

tuple3 (One a) = Nothing
tuple3 (Two a b) = Nothing
tuple3 (Three a b c) = Just c
tuple3 (Four a b c d) = Just c

tuple4 (One a) = Nothing
tuple4 (Two a b) = Nothing
tuple4 (Three a b c) = Nothing
tuple4 (Four a b c d) = Just d

Solution 4.7
The code:

fromTuple (One a) = Left (Left a)
fromTuple (Two a b) = Left (Right (a,b))
fromTuple (Three a b c) = Right (Left (a,b,c))
fromTuple (Four a b c d) = Right (Right (a,b,c,d))

Here, we use embedded Eithers to represent the fact that there are four (instead
of two) options.

Solution 4.8
The code:

listHead (Cons x xs) = x
listTail (Cons x xs) = xs

listFoldl f y Nil = y
listFoldl f y (Cons x xs) = listFoldl f (f y x) xs

listFoldr f y Nil = y
listFoldr f y (Cons x xs) = f x (foldr f z xs)

Solution 4.9
The code:

elements (Leaf x) = [x]
elements (Branch lhs x rhs) =
elements lhs ++ [x] ++ elements rhs

Solution 4.10
The code:

169

foldTree :: (a -> b -> b) -> b -> BinaryTree a -> b
foldTree f z (Leaf x) = f x z
foldTree f z (Branch lhs x rhs) =

foldTree f (f x (foldTree f z rhs)) lhs

elements2 = foldTree (:) []

or:

elements2 tree = foldTree (\a b -> a:b) [] tree

The first elements2 is simply a more compact version of the second.

Solution 4.11
It mimicks neither exactly. It’s behavior most closely resembles foldr, but differs
slightly in its treatment of the initial value. We can observe the difference in an inter-
preter:

CPS> foldr (-) 0 [1,2,3]
2
CPS> foldl (-) 0 [1,2,3]
-6
CPS> fold (-) 0 [1,2,3]
-2

Clearly it behaves differently. By writing down the derivations of fold and foldr
we can see exactly where they diverge:

foldr (-) 0 [1,2,3]
==> 1 - foldr (-) 0 [2,3]
==> ...
==> 1 - (2 - (3 - foldr (-) 0 []))
==> 1 - (2 - (3 - 0))
==> 2

fold (-) 0 [1,2,3]
==> fold’ (-) (\y -> 0 - y) [1,2,3]
==> 0 - fold’ (-) (\y -> 1 - y) [2,3]
==> 0 - (1 - fold’ (-) (\y -> 2 - y) [3])
==> 0 - (1 - (2 - 3))
==> -2

Essentially, the primary difference is that in the foldr case, the “initial value” is
used at the end (replacing []), whereas in the CPS case, the initial value is used at the
beginning.

170 APPENDIX C. SOLUTIONS TO EXERCISES

Solution 4.12

Solution 5.1
Using if, we get something like:

main = do
putStrLn "Please enter your name:"
name <- getLine
if name == "Simon" || name == "John" || name == "Phil"
then putStrLn "Haskell is great!"
else if name == "Koen"

then putStrLn "Debugging Haskell is fun!"
else putStrLn "I don’t know who you are."

Note that we don’t need to repeat the dos inside the ifs, since these are only one
action commands.

We could also be a bit smarter and use the elem command which is built in to the
Prelude:

main = do
putStrLn "Please enter your name:"
name <- getLine
if name ‘elem‘ ["Simon", "John", "Phil"]
then putStrLn "Haskell is great!"
else if name == "Koen"

then putStrLn "Debugging Haskell is fun!"
else putStrLn "I don’t know who you are."

Of course, we needn’t put all the putStrLns inside the if statements. We could
instead write:

main = do
putStrLn "Please enter your name:"
name <- getLine
putStrLn
(if name ‘elem‘ ["Simon", "John", "Phil"]

then "Haskell is great!"
else if name == "Koen"

then "Debugging Haskell is fun!"
else "I don’t know who you are.")

Using case, we get something like:

171

main = do
putStrLn "Please enter your name:"
name <- getLine
case name of
"Simon" -> putStrLn "Haskell is great!"
"John" -> putStrLn "Haskell is great!"
"Phil" -> putStrLn "Haskell is great!"
"Koen" -> putStrLn "Debugging Haskell is fun!"
_ -> putStrLn "I don’t know who you are."

Which, in this case, is actually not much cleaner.

Solution 5.2
The code might look something like:

module DoFile where

import IO

main = do
putStrLn "Do you want to [read] a file, ...?"
cmd <- getLine
case cmd of
"quit" -> return ()
"read" -> do doRead; main
"write" -> do doWrite; main
_ -> do putStrLn

("I don’t understand the command "
++ cmd ++ ".")

main

doRead = do
putStrLn "Enter a file name to read:"
fn <- getLine
bracket (openFile fn ReadMode) hClose

(\h -> do txt <- hGetContents h
putStrLn txt)

doWrite = do
putStrLn "Enter a file name to write:"
fn <- getLine
bracket (openFile fn WriteMode) hClose

(\h -> do putStrLn
"Enter text (...):"

172 APPENDIX C. SOLUTIONS TO EXERCISES

writeLoop h)

writeLoop h = do
l <- getLine
if l == "."
then return ()
else do hPutStrLn h l

writeLoop h

The only interesting things here are the calls to bracket, which ensure the that the
program lives on, regardless of whether there’s a failure or not; and the writeLoop
function. Note that we need to pass the handle returned by openFile (through
bracket to this function, so it knows where to write the input to).

Solution 7.1
Function func3 cannot be converted into point-free style. The others look something
like:

func1 x = map (*x)

func2 f g = filter f . map g

func4 = map (+2) . filter (‘elem‘ [1..10]) . (5:)

func5 = foldr (uncurry $ flip f) 0

You might have been tempted to try to write func2 as filter f . map,
trying to eta-reduce off the g. In this case, this isn’t possible. This is because the
function composition operator (.) has type (b → c) → (a → b) → (a → c). In this
case, we’re trying to use map as the second argument. But map takes two arguments,
while (.) expects a function which takes only one.

Solution 7.2
We can start out with a recursive definition:

and [] = True
and (x:xs) = x && and xs

From here, we can clearly rewrite this as:

and = foldr (&&) True

Solution 7.3
We can write this recursively as:

173

concatMap f [] = []
concatMap f (x:xs) = f x ++ concatMap f xs

This hints that we can write this as:

concatMap f = foldr (\a b -> f a ++ b) []

Now, we can do point elimination to get:

foldr (\a b -> f a ++ b) []
==> foldr (\a b -> (++) (f a) b) []
==> foldr (\a -> (++) (f a)) []
==> foldr (\a -> ((++) . f) a) []
==> foldr ((++) . f) []

Solution 9.1
The first law is: return a >>= f ≡ f a. In the case of Maybe, we get:

return a >>= f
==> Just a >>= \x -> f x
==> (\x -> f x) a
==> f a

The second law is: f >>= return ≡ f. Here, we get:

f >>= return
==> f >>= \x -> return x
==> f >>= \x -> Just x

At this point, there are two cases depending on whether f is Nothing or not. In
the first case, we get:

==> Nothing >>= \x -> Just x
==> Nothing
==> f

In the second case, f is Just a. Then, we get:

==> Just a >>= \x -> Just x
==> (\x -> Just x) a
==> Just a
==> f

174 APPENDIX C. SOLUTIONS TO EXERCISES

And the second law is shown. The third law states: f >>= (\x -> g x >>=
h) ≡ (f >>= g) >>= h.

If f is Nothing, then the left-hand-side clearly reduces to Nothing. The right-
hand-side reduces to Nothing >>= h which in turn reduces to Nothing, so they
are the same.

Suppose f is Just a. Then the LHS reduces to g a >>= h and the RHS re-
duces to (Just a >>= \x -> g x) >>= h which in turn reduces to g a >>=
h, so these two are the same.

Solution 9.2
The idea is that we wish to use the Left constructor to represent errors on the Right
constructor to represent successes. This leads to an instance declaration like:

instance Monad (Either String) where
return x = Right x
Left s >>= _ = Left s
Right x >>= f = f x
fail s = Left s

If we try to use this monad to do search, we get:

Monads> searchAll gr 0 3 :: Either String [Int]
Right [0,1,3]
Monads> searchAll gr 3 0 :: Either String [Int]
Left "no path"

which is exactly what we want.

Solution 9.3
The order to mplus essentially determins the search order. When the recursive call to
searchAll2 comes first, we are doing depth-first search. When the recursive call to
search’ comes first, we are doing breadth-first search. Thus, using the list monad,
we expect the solutions to come in the other order:

MPlus> searchAll3 gr 0 3 :: [[Int]]
[[0,2,3],[0,1,3]]

Just as we expected.

Solution 9.4
This is a very difficult problem; if you found that you were stuck immediately, please
just read as much of this solution as you need to try it yourself.

First, we need to define a list transformer monad. This looks like:

175

newtype ListT m e = ListT { unListT :: m [e] }

The ListT constructor simply wraps a monadic action (in monad m) which returns
a list.

We now need to make this a monad:

instance Monad m => Monad (ListT m) where
return x = ListT (return [x])
fail s = ListT (return [])
ListT m >>= k = ListT $ do

l <- m
l’ <- mapM (unListT . k) l
return (concat l’)

Here, success is designated by a monadic action which returns a singleton list.
Failure (like in the standard list monad) is represented by an empty list: of course, it’s
actually an empty list returned from the enclosed monad. Binding happens essentially
by running the action which will result in a list l. This has type [e]. We now need
to apply k to each of these elements (which will result in something of type ListT m
[e2]. We need to get rid of the ListTs around this (by using unListT) and then
concatenate them to make a single list.

Now, we need to make it an instance of MonadPlus

instance Monad m => MonadPlus (ListT m) where
mzero = ListT (return [])
ListT m1 ‘mplus‘ ListT m2 = ListT $ do

l1 <- m1
l2 <- m2
return (l1 ++ l2)

Here, the zero element is a monadic action which returns an empty list. Addition is
done by executing both actions and then concatenating the results.

Finally, we need to make it an instance of MonadTrans:

instance MonadTrans ListT where
lift x = ListT (do a <- x; return [a])

Lifting an action into ListT simply involves running it and getting the value (in
this case, a) out and then returning the singleton list.

Once we have all this together, writing searchAll6 is fairly straightforward:

searchAll6 g@(Graph vl el) src dst
| src == dst = do

lift $ putStrLn $

176 APPENDIX C. SOLUTIONS TO EXERCISES

"Exploring " ++ show src ++ " -> " ++ show dst
return [src]

| otherwise = do
lift $ putStrLn $

"Exploring " ++ show src ++ " -> " ++ show dst
search’ el

where
search’ [] = mzero
search’ ((u,v,_):es)

| src == u =
(do path <- searchAll6 g v dst

return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

The only change (besides changing the recursive call to call searchAll6 instead
of searchAll2) here is that we call putStrLn with appropriate arguments, lifted
into the monad.

If we look at the type of searchAll6, we see that the result (i.e., after applying a
graph and two ints) has type MonadTrans t, MonadPlus (t IO) => t IO
[Int]). In theory, we could use this with any appropriate monad transformer; in our
case, we want to use ListT. Thus, we can run this by:

MTrans> unListT (searchAll6 gr 0 3)
Exploring 0 -> 3
Exploring 1 -> 3
Exploring 3 -> 3
Exploring 2 -> 3
Exploring 3 -> 3
MTrans> it
[[0,1,3],[0,2,3]]

This is precisely what we were looking for.

Solution 9.5
This exercise is actually simpler than the previous one. All we need to do is incorporate
the calls to putT and getT into searchAll6 and add an extra lift to the IO calls.
This extra lift is required because now we’re stacking two transformers on top of IO
instead of just one.

searchAll7 g@(Graph vl el) src dst
| src == dst = do
lift $ lift $ putStrLn $

"Exploring " ++ show src ++ " -> " ++ show dst
visited <- getT

177

putT (src:visited)
return [src]

| otherwise = do
lift $ lift $ putStrLn $
"Exploring " ++ show src ++ " -> " ++ show dst

visited <- getT
putT (src:visited)
if src ‘elem‘ visited
then mzero
else search’ el

where
search’ [] = mzero
search’ ((u,v,_):es)

| src == u =
(do path <- searchAll7 g v dst

return (u:path)) ‘mplus‘
search’ es

| otherwise = search’ es

The type of this has grown significantly. After applying the graph and two ints, this
has type Monad (t IO), MonadTrans t, MonadPlus (StateT [Int]
(t IO)) => StateT [Int] (t IO) [Int].

Essentially this means that we’ve got something that’s a state transformer wrapped
on top of some other arbitrary transformer (t) which itself sits on top of IO. In our
case, t is going to be ListT. Thus, we run this beast by saying:

MTrans> unListT (evalStateT (searchAll7 gr4 0 3) [])
Exploring 0 -> 3
Exploring 1 -> 3
Exploring 3 -> 3
Exploring 0 -> 3
Exploring 2 -> 3
Exploring 3 -> 3
MTrans> it
[[0,1,3],[0,2,3]]

And it works, even on gr4.

Solution 9.6
First we write a function spaces which will parse out whitespaces:

spaces :: Parser ()
spaces = many (matchChar isSpace) >> return ()

Now, using this, we simply sprinkle calls to spaces through intList to get
intListSpace:

178 APPENDIX C. SOLUTIONS TO EXERCISES

intListSpace :: Parser [Int]
intListSpace = do
char ’[’
spaces
intList’ ‘mplus‘ (char ’]’ >> return [])
where intList’ = do

i <- int
spaces
r <- (char ’,’ >> spaces >> intList’)

‘mplus‘
(char ’]’ >> return [])

return (i:r)

We can test that this works:

Parsing> runParser intListSpace "[1 ,2 , 4 \n\n ,5\n]"
Right ("",[1,2,4,5])
Parsing> runParser intListSpace "[1 ,2 , 4 \n\n ,a\n]"
Left "expecting char, got ’a’"

Solution 9.7
We do this by replacing the state functions with push and pop functions as follows:

parseValueLet2 :: CharParser (FiniteMap Char [Int]) Int
parseValueLet2 = choice
[int
, do string "let "

c <- letter
char ’=’
e <- parseValueLet2
string " in "
pushBinding c e
v <- parseValueLet2
popBinding c
return v

, do c <- letter
fm <- getState
case lookupFM fm c of
Nothing -> unexpected ("variable " ++

show c ++
" unbound")

Just (i:_) -> return i
, between (char ’(’) (char ’)’) $ do

e1 <- parseValueLet2

179

op <- oneOf "+*"
e2 <- parseValueLet2
case op of
’+’ -> return (e1 + e2)
’*’ -> return (e1 * e2)

]
where
pushBinding c v = do

fm <- getState
case lookupFM fm c of
Nothing -> setState (addToFM fm c [v])
Just l -> setState (addToFM fm c (v:l))

popBinding c = do
fm <- getState
case lookupFM fm c of
Just [_] -> setState (delFromFM fm c)
Just (_:l) -> setState (addToFM fm c l)

The primary difference here is that instead of calling updateState, we use two
local functions, pushBinding and popBinding. The pushBinding function
takes a variable name and a value and adds the value onto the head of the list pointed to
in the state FiniteMap. The popBinding function looks at the value and if there is
only one element on the stack, it completely removes the stack from the FiniteMap;
otherwise it just removes the first element. This means that if something is in the
FiniteMap, the stack is never empty.

This enables us to modify only slightly the usage case; this time, we simply take
the top element off the stack when we need to inspect the value of a variable.

We can test that this works:

ParsecI> runParser parseValueLet2 emptyFM "stdin"
"((let x=2 in 3+4)*x)"

Left "stdin" (line 1, column 20):
unexpected variable ’x’ unbound

Index

(), 87
∗, 32
+, 32
++, 38
−, 32
−−, 52
., 50
.., 140
/, 32
//, 144
:, 36
::, 65
==, 65
[], 36
ˆ, 32
ΓE30F , 72
λ, 72
{−−}, 52
, 122

as, 111
derive, 134
do, 57
hiding, 111
import, 110
qualified, 110

accumArray, 143
actions, 95–100
arithmetic, 32–34
array, 143
arrays, 143–145
assocs, 144

Bird scripts, 113
boolean, 66
bounds, 144
bracket, 101

brackets, 36
buffering, 58

comments, 52–53
common sub-expression, 117
Compilers, see GHC,NHC,Interpreters
concatenate, 38
cons, 36
constructors, 81
continuation passing style, 87–90
CPS, see continuation passing style

destructive update, 31
do notation, 173–176
do notation, 57
drop, 140

Editors, 27–28
Emacs, 27

elems, 144
Enum, 131–132
enumerated types, 84
enumFromThenTo, 141
enumFromTo, 141
Eq, 127–129
equality, 65
equals, 70
evaluation order, 32
exceptions, 182
exports, 107–110
expressions, 32
extensions

enabling
in GHC, 25
in Hugs, 23

fallthrough, 123
false, see boolean

180

INDEX 181

files, 42–44
filter, 38, 138
FiniteMap, 145–147
foldl, 38, 139
foldr, 38, 138
fst, 35
functional, 3
functions, 44–52

anonymous, see lambda
as arguments, 78–80
associative, 40
composition, 50
type, 71–80

getChar, 101
getContents, 101
getLine, 58, 101
GHC, 19, 23–26
guards, 125–127

Haskell 98, 8
Haskell Bookshelf, 7
hClose, 101
head, 37, 74
hGetChar, 101
hGetContents, 101
hGetLin, 101
hIsEOF, 101
hPutChar, 101
hPutStr, 101
hPutStrLn, 101
Hugs, 19–23

ICFP, 9
immutable, 31
imports, 110–111
indices, 144
induction, 54
infix, 75, 115–116
input, see IO
instance, 67
interactive programs, 56–63
Interpreters, see GHC,Hugs
IO, 91–106

library, 100–103
isLower, 38

lambda, 72
lambda calculus, 72
LaTeX scripts, 114
layout, 147
lazy, 2, 29
length, 37, 79
let

and do, 175
list

comprehensions, 143
listArray, 143
lists, 35–42, 137–143

comprehensions, 140
cons, 36
empty, 36

literate style, 112–114
local bindings, 117
loop, 53

map, 38, 138
maps, 145–147
Maybe, 85–87
modules, 107–114

hierarchical, 111–112
monads, 94

and do, 173–176
definition of, 170–173
laws, 171
plus, 181
state, 176–181
transformer, 181

mutable, see immutable

named fields, 135–137
NHC, 19, 26–27
null, 74
Num, 132
numeric types, 70

openFile, 101
operator precedence, 33
Ord, 130–131
output, see IO

pairs, see tuples
parentheses, 33

182 INDEX

pattern matching, 82, 119–125
pure, 2
putChar, 101
putStr, 101
putStrLn, 44, 101

random numbers, 59
randomRIO, 59
Read, 132–133
read, 38
readFile, 101
recursion, 53–56
referential tranparency, 31
robot, 9

sections, 115–116
shadowing, 117
Show, 129–130
show, 38, 71
snd, 35
sqrt, 32
standard, 8
state, 2
strict, 2, 152–155
strings, 37–38

converting from/to, 38

tail, 37, 74
take, 140
toUpper, 38
true, see boolean
tuples, 34–35
type, 64, 168

checking, 64
classes, 69–71, 155–162

instances, 127–134, 162–165
datatypes, 80–87, 134–137, 152–

155
strict, 152–155

default, 168
errors, 66
explicit declarations, 77–78
hierarchy, 168
higher-order, 73–75
inference, 64
IO, 75–77

kinds, 165–168
newtype, 149–152
polymorphic, 67–69
signatures, 77
synonyms, 101, 148–149

Unit, 87
unzip, 139
user input, see interactive programs

wildcard, 122
writeFile, 101

zip, 139

