
CSE341: Programming Languages

Lecture 24
Subtyping

Dan Grossman
Spring 2016

Last major topic: Subtyping

Build up key ideas from first principles
– In pseudocode because:

• No time for another language
• Simpler to first show subtyping without objects

Then:

• How does subtyping relate to types for OOP?
– Brief sketch only

• What are the relative strengths of subtyping and generics?

• How can subtyping and generics combine synergistically?

Spring 2016 2 CSE341: Programming Languages

A tiny language

• Can cover most core subtyping ideas by just considering
 records with mutable fields

• Will make up our own syntax

– ML has records, but no subtyping or field-mutation
– Racket and Ruby have no type system
– Java uses class/interface names and rarely fits on a slide

Spring 2016 3 CSE341: Programming Languages

Records (half like ML, half like Java)

Record creation (field names and contents):

 Evaluate ei, make a record

Record field access:
 Evaluate e to record v with an f field, get contents
 of f field

Record field update
 Evaluate e1 to a record v1 and e2 to a value v2;
 Change v1's f field (which must exist) to v2;
 Return v2

 Spring 2016 4 CSE341: Programming Languages

{f1=e1, f2=e2, …, fn=en}

e.f

e1.f = e2

A Basic Type System

Record types: What fields a record has and type for each field

Type-checking expressions:

• If e1 has type t1, …, en has type tn,
 then {f1=e1, …, fn=en} has type {f1:t1, …, fn:tn}

• If e has a record type containing f : t,
 then e.f has type t

• If e1 has a record type containing f : t and e2 has type t,
 then e1.f = e2 has type t

Spring 2016 5 CSE341: Programming Languages

{f1:t1, f2:t2, …, fn:tn}

This is safe

These evaluation rules and typing rules prevent ever trying to
access a field of a record that does not exist

Example program that type-checks (in a made-up language):

Spring 2016 6 CSE341: Programming Languages

fun distToOrigin (p:{x:real,y:real}) =
 Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin(pythag)

Motivating subtyping

But according to our typing rules, this program does not type-check
– It does nothing wrong and seems worth supporting

Spring 2016 7 CSE341: Programming Languages

fun distToOrigin (p:{x:real,y:real}) =
 Math.sqrt(p.x*p.x + p.y*p.y)

val c : {x:real,y:real,color:string} =
 {x=3.0, y=4.0, color="green"}

val five : real = distToOrigin(c)

A good idea: allow extra fields

Natural idea: If an expression has type
{f1:t1, f2:t2, …, fn:tn}

Then it can also have a type with some fields removed

This is what we need to type-check these function calls:

Spring 2016 8 CSE341: Programming Languages

fun distToOrigin (p:{x:real,y:real}) = …
fun makePurple (p:{color:string}) =
 p.color = "purple"

val c :{x:real,y:real,color:string} =
 {x=3.0, y=4.0, color="green"}

val _ = distToOrigin(c)
val _ = makePurple(c)

Keeping subtyping separate

A programming language already has a lot of typing rules and we
do not want to change them

– Example: The type of an actual function argument must
equal the type of the function parameter

We can do this by adding “just two things to our language”
– Subtyping: Write t1 <: t2 for t1 is a subtype of t2
– One new typing rule that uses subtyping:
 If e has type t1 and t1 <: t2,
 then e (also) has type t2

Now all we need to do is define t1 <: t2

Spring 2016 9 CSE341: Programming Languages

Subtyping is not a matter of opinion

• Misconception: If we are making a new language, we can have
whatever typing and subtyping rules we want

• Not if you want to prevent what you claim to prevent [soundness]
– Here: No accessing record fields that do not exist

• Our typing rules were sound before we added subtyping

– We should keep it that way

• Principle of substitutability: If t1 <: t2, then any value of type
t1 must be usable in every way a t2 is
– Here: Any value of subtype needs all fields any value of

supertype has

Spring 2016 10 CSE341: Programming Languages

Four good rules

For our record types, these rules all meet the substitutability test:

1. “Width” subtyping: A supertype can have a subset of fields with
the same types

2. “Permutation” subtyping: A supertype can have the same set of
fields with the same types in a different order

3. Transitivity: If t1 <: t2 and t2 <: t3, then t1 <: t3

4. Reflexivity: Every type is a subtype of itself

(4) may seem unnecessary, but it composes well with other rules in
a full language and “does no harm”

Spring 2016 11 CSE341: Programming Languages

More record subtyping?
[Warning: I am misleading you]

Subtyping rules so far let us drop fields but not change their types

Example: A circle has a center field holding another record

For this to type-check, we need:

{center:{x:real,y:real,z:real}, r:real}
<:

{center:{x:real,y:real}, r:real}
 Spring 2016 12 CSE341: Programming Languages

fun circleY (c:{center:{x:real,y:real}, r:real}) =
 c.center.y

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0,y=4.0,z=0.0}, r=1.0}

val _ = circleY(sphere)

Do not have this subtyping – could we?

{center:{x:real,y:real,z:real}, r:real}
<:

{center:{x:real,y:real}, r:real}

• No way to get this yet: we can drop center, drop r, or permute

order, but cannot “reach into a field type” to do subtyping

• So why not add another subtyping rule… “Depth” subtyping:
 If ta <: tb, then {f1:t1, …, f:ta, …, fn:tn} <:
 {f1:t1, …, f:tb, …, fn:tn}

• Depth subtyping (along with width on the field's type) lets our

example type-check

Spring 2016 13 CSE341: Programming Languages

Stop!

• It is nice and all that our new subtyping rule lets our example
type-check

• But it is not worth it if it breaks soundness
– Also allows programs that can access missing record fields

• Unfortunately, it breaks soundness

Spring 2016 14 CSE341: Programming Languages

Mutation strikes again

If ta <: tb,
then {f1:t1, …, f:ta, …, fn:tn} <:
 {f1:t1, …, f:tb, …, fn:tn}

Spring 2016 15 CSE341: Programming Languages

fun setToOrigin (c:{center:{x:real,y:real}, r:real})=
 c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0, y=4.0, z=0.0}, r=1.0}

val _ = setToOrigin(sphere)
val _ = sphere.center.z (* kaboom! (no z field) *)

Moral of the story

• In a language with records/objects with getters and setters,
depth subtyping is unsound
– Subtyping cannot change the type of fields

• If fields are immutable, then depth subtyping is sound!

– Yet another benefit of outlawing mutation!
– Choose two of three: setters, depth subtyping, soundness

• Remember: subtyping is not a matter of opinion

Spring 2016 16 CSE341: Programming Languages

Picking on Java (and C#)
Arrays should work just like records in terms of depth subtyping

– But in Java, if t1 <: t2, then t1[] <: t2[]
– So this code type-checks, surprisingly

Spring 2016 17 CSE341: Programming Languages

class Point { … }
class ColorPoint extends Point { … }
…
void m1(Point[] pt_arr) {
 pt_arr[0] = new Point(3,4);
}
String m2(int x) {
 ColorPoint[] cpt_arr = new ColorPoint[x];
 for(int i=0; i < x; i++)
 cpt_arr[i] = new ColorPoint(0,0,"green");
 m1(cpt_arr); // !
 return cpt_arr[0].color; // !
}

Why did they do this?

• More flexible type system allows more programs but prevents fewer
errors
– Seemed especially important before Java/C# had generics

• Good news: despite this “inappropriate” depth subtyping
– e.color will never fail due to there being no color field
– Array reads e1[e2] always return a (subtype of) t if e1 is a t[]

• Bad news: to get the good news
– e1[e2]=e3 can fail even if e1 has type t[] and e3 has type t
– Array stores check the run-time class of e1's elements and do

not allow storing a supertype
– No type-system help to avoid such bugs / performance cost

Spring 2016 18 CSE341: Programming Languages

So what happens

• Causes code in m1 to throw an ArrayStoreException
– Even though logical error is in m2
– At least run-time checks occur only on array stores, not on

field accesses like c.color

Spring 2016 19 CSE341: Programming Languages

void m1(Point[] pt_arr) {
 pt_arr[0] = new Point(3,4); // can throw
}
String m2(int x) {
 ColorPoint[] cpt_arr = new ColorPoint[x];
 …
 m1(cpt_arr); // "inappropriate" depth subtyping
 ColorPoint c = cpt_arr[0]; // fine, cpt_arr
 // will always hold (subtypes of) ColorPoints
 return c.color; // fine, a ColorPoint has a color
}

null

• Array stores probably the most surprising choice for flexibility over
static checking

• But null is the most common one in practice
– null is not an object; it has no fields or methods
– But Java and C# let it have any object type (backwards, huh?!)
– So, in fact, we do not have the static guarantee that evaluating
e in e.f or e.m(…) produces an object that has an f or m

– The “or null” caveat leads to run-time checks and errors, as
you have surely noticed

• Sometimes null is convenient (like ML's option types)
– But also having “cannot be null” types would be nice

Spring 2016 20 CSE341: Programming Languages

Now functions

• Already know a caller can use subtyping for arguments passed
– Or on the result

• More interesting: When is one function type a subtype of another?

– Important for higher-order functions: If a function expects an
argument of type t1 -> t2, can you pass a t3 -> t4 instead?

– Coming next: Important for understanding methods
• (An object type is a lot like a record type where “method

positions” are immutable and have function types)

Spring 2016 21 CSE341: Programming Languages

Example

Spring 2016 22 CSE341: Programming Languages

No subtyping here yet:
– flip has exactly the type distMoved expects for f
– Can pass distMoved a record with extra fields for p,

but that's old news

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
 p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flip p = {x = ~p.x, y=~p.y}
val d = distMoved(flip, {x=3.0, y=4.0})

Return-type subtyping

• Return type of flipGreen is {x:real,y:real,color:string},
but distMoved expects a return type of {x:real,y:real}

• Nothing goes wrong: If ta <: tb, then t -> ta <: t -> tb
– A function can return “more than it needs to”
– Jargon: “Return types are covariant”

Spring 2016 23 CSE341: Programming Languages

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
 p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipGreen p = {x = ~p.x, y=~p.y, color="green"}
val d = distMoved(flipGreen, {x=3.0, y=4.0})

This is wrong

Spring 2016 24 CSE341: Programming Languages

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
 p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipIfGreen p = if p.color = "green" (*kaboom!*)
 then {x = ~p.x, y=~p.y}
 else {x = p.x, y=p.y}
val d = distMoved(flipIfGreen, {x=3.0, y=4.0})

• Argument type of flipIfGreen is
{x:real,y:real,color:string}, but it is called with a
{x:real,y:real}

• Unsound! ta <: tb does NOT allow ta -> t <: tb -> t

The other way works!

Spring 2016 25 CSE341: Programming Languages

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
 p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipX_Y0 p = {x = ~p.x, y=0.0}
val d = distMoved(flipX_Y0, {x=3.0, y=4.0})

• Argument type of flipX_Y0 is {x:real}, but it is called with a
{x:real,y:real}, which is fine

• If tb <: ta, then ta -> t <: tb -> t
– A function can assume “less than it needs to” about arguments
– Jargon: “Argument types are contravariant”

Can do both

• flipXMakeGreen has type
 {x:real} -> {x:real,y:real,color:string}
• Fine to pass a function of such a type as function of type
 {x:real,y:real} -> {x:real,y:real}
• If t3 <: t1 and t2 <: t4, then t1 -> t2 <: t3 -> t4

Spring 2016 26 CSE341: Programming Languages

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
 p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipXMakeGreen p = {x = ~p.x, y=0.0, color="green"}
val d = distMoved(flipXMakeGreen, {x=3.0, y=4.0})

Conclusion

• If t3 <: t1 and t2 <: t4, then t1 -> t2 <: t3 -> t4
– Function subtyping contravariant in argument(s) and

covariant in results

• Also essential for understanding subtyping and methods in OOP

• Most unintuitive concept in the course
– Smart people often forget and convince themselves

covariant arguments are okay
– These people are always mistaken
– At times, you or your boss or your friend may do this
– Remember: A guy with a PhD in PL jumped up and down

insisting that function/method subtyping is always
contravariant in its argument -- covariant is unsound

Spring 2016 27 CSE341: Programming Languages

