
CSE341: Programming Languages

Lecture 26
Course Victory Lap

Dan Grossman
Spring 2016

Final Exam

As also indicated in class-list email:
• Next Monday, 8:30-10:20
• Intention is to focus primarily on material since the midterm

– Including topics on homeworks and not on homeworks
– May also have a little ML, just like the course has had

• You will need to write code and English

Spring 2016 2 CSE341: Programming Languages

Victory Lap

A victory lap is an extra trip
around the track

– By the exhausted victors (us)

Review course goals
– Slides from Introduction and Course-Motivation

Some big themes and perspectives

– Stuff for five years from now more than for the final

Do your course evaluations!!!

Spring 2016 3 CSE341: Programming Languages

Thank you!

• Huge thank-you to your TAs
– Great team effort
– Deep understanding of material despite all having different

341 instructors
– Great sections, timely grading, etc., etc.

Spring 2016 4 CSE341: Programming Languages

Thank you!

• And a huge thank you to all of you
– Great attitude about a very different view of software
– Good class attendance and questions
– Occasionally laughed at stuff

• Computer science ought to be challenging and fun!

Spring 2016 5 CSE341: Programming Languages

[From Lecture 1]

• Many essential concepts relevant in any programming language
– And how these pieces fit together

• Use ML, Racket, and Ruby languages:
– They let many of the concepts “shine”
– Using multiple languages shows how the same concept can

“look different” or actually be slightly different
– In many ways simpler than Java

• Big focus on functional programming
– Not using mutation (assignment statements) (!)
– Using first-class functions (can’t explain that yet)
– But many other topics too

Spring 2016 6 CSE341: Programming Languages

[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a

lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

Spring 2016 7 CSE341: Programming Languages

[From Course Motivation]
• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software
– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades
– Ideas have been absorbed by the mainstream, but very slowly
– First-class functions and avoiding mutation increasingly essential
– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was

chosen for a reason and for how they complement each other

Spring 2016 8 CSE341: Programming Languages

[From Course Motivation]
SML, Racket, and Ruby are a useful combination for us

 dynamically typed statically typed
 functional Racket SML
 object-oriented Ruby Java
ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins
 [and much more]

Really wish we had more time:
Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking
[and much more]

Spring 2016 9 CSE341: Programming Languages

Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1

2. More functions/modules are equivalent: Unit 4

3. No need to make local copies of data: Unit 5

4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

– A fold over a collection (e.g., summing a list) is not!
Spring 2016 10 CSE341: Programming Languages

Some other highlights

• Function closures are really powerful and convenient…
– … and implementing them is not magic

• Datatypes and pattern-matching are really convenient…

– … and exactly the opposite of OOP decomposition

• Sound static typing prevents certain errors…
– … and is inherently approximate

• Subtyping and generics allow different kinds of code reuse…

– … and combine synergistically

• Modularity is really important; languages can help

Spring 2016 11 CSE341: Programming Languages

From the syllabus

Successful course participants will:

• Internalize an accurate understanding of what functional and
object-oriented programs mean

• Develop the skills necessary to learn new programming
languages quickly

• Master specific language concepts such that they can recognize
them in strange guises

• Learn to evaluate the power and elegance of programming
languages and their constructs

• Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

Spring 2016 12 CSE341: Programming Languages

The End

This really is my favorite course and it probably always will be

 Don’t be a stranger!

Time for ask-me-anything questions?

Spring 2016 13 CSE341: Programming Languages

