
4/21/16

1

CSE	341
Section	4

Nicholas	Shahan
Spring	2016

Adapted	 from	 s lides 	by	 Cody	 A.	 Schroeder,	 and	 Dan	 Grossman

Today’s	Agenda

• Mutual	Recursion
• Module	System	Example
• Namespace	Organization
• Preserving	Invariants

• Practice	with	Currying	and	High	Order	Functions

2

Mutual	Recursion

• What	if	we	need	 function	f	to	call	g,	and	function	g	
to	call	f?
• This	is	a	common	idiom

3

fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately	this	
does	not	work	L

Mutual	Recursion	Workaround

• We	can	use	higher	order	functions	to	get	this	
working
• It	works,	but	there	has	got	to	be	a	better	way!

4

fun earlier (f, x) =
...
f x
...

fun later x =
...
earlier (later, x)
...

Mutual	Recursion	with	and

• SML	has	a	keyword	for	that
• Works	with	mutually	recursive	datatype bindings		
too

5

fun earlier x =
...
later x
...

and later x =
...
earlier x
...

Module	System

• Good	for	organizing	code,	and	managing	
namespaces	(useful,	relevant)
• Good	for	maintaining	invariants	(interesting)

6



4/21/16

2

Currying	 and	High	Order	Functions

• List.map!
• List.filter!
• List.foldl!
• Emacs unite!

7


