
CSE341: Programming Languages Spring 2016
Unit 7 Summary

Standard Description: This summary covers roughly the same material as class and recitation section. It
can help to read about the material in a narrative style and to have the material for an entire unit of the
course in a single document, especially when reviewing the material later. Please report errors in these notes,
even typos. This summary is not a sufficient substitute for attending class, reading the associated code, etc.

Contents

Ruby Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ruby Features Most Interesting for a PL Course . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Rules of Class-Based OOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Objects, Classes, Methods, Variables, Etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Visibility and Getters/Setters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Some Syntax, Semantics, and Scoping To Get Used To . . . . . . . . . . . . . . . . . . . . . . 7

Everything is an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The Top-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Class Definitions are Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Duck Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Passing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Using Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The Proc Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Hashes and Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Subclassing and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Why Use Subclassing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Overriding and Dynamic Dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The Precise Definition of Method Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Dynamic Dispatch Versus Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Implementing Dynamic Dispatch Manually in Racket . . . . . . . . . . . . . . . . . . . . . . . 21

Ruby Logistics

The course website provides installation and basic usage instructions for Ruby and its REPL (called irb),
so that information is not repeated here. Note that for consistency we will require Ruby version 2.x.y (for
any x and y), although this is for homework purposes – the concepts we will discuss do not depend on an
exact version, naturally.

There is a great amount of free documentation for Ruby at http://ruby-doc.org and http://www.

ruby-lang.org/en/documentation/. We also recommend, Programming Ruby 1.9 & 2.0, The Pragmatic
Programmers’ Guide although this book is not free. Because the online documentation is excellent, the
other course materials may not describe in detail every language feature used in the lectures and homeworks
although it is also not our goal to make you hunt for things on purpose. In general, learning new language
features and libraries is an important skill after some initial background to point you in the right direction.
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Ruby Features Most Interesting for a PL Course

Ruby is a large, modern programming language with various features that make it popular. Some of these
features are useful for a course on programming-language features and semantics, whereas others are not
useful for our purposes even though they may be very useful in day-to-day programming. Our focus will
be on object-oriented programming, dynamic typing, blocks (which are almost closures), and mixins. We
briefly describe these features and some other things that distinguish Ruby here — if you have not seen an
object-oriented programming language, then some of this overview will not make sense until after learning
more Ruby.

• Ruby is a pure object-oriented language, which means all values in the language are objects. In Java,
as an example, some values that are not objects are null, 13, true, and 4.0. In Ruby, every expression
evaluates to an object.

• Ruby is class-based : Every object is an instance of a class. An object’s class determines what methods
an object has. (All code is in methods, which are like functions in the sense that they take arguments
and return results.) You call a method “on” an object, e.g., obj.m(3,4) evaluates the variable obj

to an object and calls its m method with arguments 3 and 4. Not all object-oriented languages are
class-based; see, for example, JavaScript.

• Ruby has mixins: The next course-unit will describe mixins, which strike a reasonable compromise
between multiple inheritance (like in C++) and interfaces (like in Java). Every Ruby class has one
superclass, but it can include any number of mixins, which, unlike interfaces, can define methods (not
just require their existence).

• Ruby is dynamically typed : Just as Racket allowed calling any function with any argument, Ruby
allows calling any method on any object with any arguments. If the receiver (the object on which we
call the method) does not define the method, we get a dynamic error.

• Ruby has many dynamic features: In addition to dynamic typing, Ruby allows instance variables
(called fields in many object-oriented languages) to be added and removed from objects and it allows
methods to be added and removed from classes while a program executes.

• Ruby has convenient reflection: Various built-in methods make it easy to discover at run-time proper-
ties about objects. As examples, every object has a method class that returns the object’s class, and
a method methods that returns an array of the object’s methods.

• Ruby has blocks and closures: Blocks are almost like closures and are used throughout Ruby libraries
for convenient higher-order programming. Indeed, it is rare in Ruby to use an explicit loop since
collection classes like Array define so many useful iterators. Ruby also has fully-powerful closures for
when you need them.

• Ruby is a scripting language: There is no precise definition of a what makes a language a scripting
language. It means the language is engineered toward making it easy to write short programs, providing
convenient access to manipulating files and strings (topics we will not discuss), and having less concern
for performance. Like many scripting languages, Ruby does not require that you declare variables
before using them and there are often many ways to say the same thing.

• Ruby is popular for web applications: The Ruby on Rails framework is a popular choice for developing
the server side of modern web-sites.

Recall that, taken together, ML, Racket, and Ruby cover three of the four combinations of functional vs.
object-oriented and statically vs. dynamically typed.
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Our focus will be on Ruby’s object-oriented nature, not on its benefits as a scripting language. We also
will not discuss at all its support for building web applications, which is a main reason it is currently so
popular. As an object-oriented language, Ruby shares much with Smalltalk, a language that has basically
not changed since 1980. Ruby does have some nice additions, such as mixins.

Ruby is also a large language with a “why not” attitude, especially with regard to syntax. ML and Racket
(and Smalltalk) adhere rather strictly to certain traditional programming-language principles, such as defin-
ing a small language with powerful features that programmers can then use to build large libraries. Ruby
often takes the opposite view. For example, there are many different ways to write an if-expression.

The Rules of Class-Based OOP

Before learning the syntax and semantics of particular Ruby constructs, it is helpful to enumerate the “rules”
that describe languages like Ruby and Smalltalk. Everything in Ruby is described in terms of object-oriented
programming, which we abbreviate OOP, as follows:

1. All values (as usual, the result of evaluating expressions) are references to objects.

2. Given an object, code “communicates with it” by calling its methods. A synonym for calling a method
is sending a message. (In processing such a message, an object is likely to send other messages to other
objects, leading to arbitrarily sophisticated computations.)

3. Each object has its own private state. Only an object’s methods can directly access or update this
state.

4. Every object is an instance of a class.

5. An object’s class determines the object’s behavior. The class contains method definitions that dictate
how an object handles method calls it receives.

While these rules are mostly true in other OOP languages like Java or C#, Ruby makes a more complete
commitment to them. For example, in Java and C#, some values like numbers are not objects (violating
rule 1) and there are ways to make object state publicly visible (violating rule 3).

Objects, Classes, Methods, Variables, Etc.

(See also the example programs posted with the lecture materials, not all of which are repeated here.)

Class and method definitions

Since every object has a class, we need to define classes and then create instances of them (an object of class
C is an instance of C). (Ruby also predefines many classes in its language and standard library.) The basic
syntax (we will add features as we go) for creating a class Foo with methods m1, m2, ... mn can be:

class Foo

def m1

...

end

def m2 (x,y)

...
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end

...

def mn z

...

end

end

Class names must be capitalized. They include method definitions. A method can take any number of
arguments, including 0, and we have a variable for each argument. In the example above, m1 takes 0
arguments, m2 takes two arguments, and mn takes 1 argument. Not shown here are method bodies. Like ML
and Racket functions, a method implicitly returns its last expression. Like Java/C#/C++, you can use an
explicit return statement to return immediately when helpful. (It is bad style to have a return at the end
of your method since it can be implicit there.)

Method arguments can have defaults in which case a caller can pass fewer actual arguments and the remaining
ones are filled in with defaults. If a method argument has a default, then all arguments to its right must
also have a default. An example is:

def myMethod (x,y,z=0,w="hi")

...

end

Calling methods

The method call e0.m(e1, ..., en) evaluates e0, e1, ..., en to objects. It then calls the method m in the
result of e0 (as determined by the class of the result of e0), passing the results of e1, ..., en as arguments. As
for syntax, the parentheses are optional. In particular, a zero-argument call is usually written e0.m, though
e0.m() also works.

To call another method on the same object as the currently executing method, you can write self.m(...)

or just m(...). (Java/C#/C++ work the same way except they use the keyword this instead of self.)

In OOP, another common name for a method call is a message send. So we can say e0.m e1 sends the result
of e0 the message m with the argument that is the result of e1. This terminology is “more object-oriented”
— as a client, we do not care how the receiver (of the message) is implemented (e.g., with a method named
m) as long as it can handle the message. As general terminology, in the call e0.m args, we call the result of
evaluating e0 the receiver (the object receiving the message).

Instance variables

An object has a class, which defines its methods. It also has instance variables, which hold values (i.e.,
objects). Many languages (e.g., Java) use the term fields instead of instance variables for the same concept.
Unlike Java/C#/C++, our class definition does not indicate what instance variables an instance of the class
will have. To add an instance variable to an object, you just assign to it: if the instance variable does
not already exist, it is created. All instance variables start with an @, e.g., @foo, to distinguish them from
variables local to a method.

Each object has its own instance variables. Instance variables are mutable. An expression (in a method
body) can read an instance variable with an expression like @foo and write an instance variable with an
expression @foo = newValue. Instance variables are private to an object. There is no way to directly access
an instance variable of any other object. So @foo refers to the @foo instance variable of the current object,
i.e., self.@foo except self.@foo is not actually legal syntax.
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Ruby also has class variables (which are like Java’s static fields). They are written @@foo. Class variables
are not private to an object. Rather, they are shared by all instances of the class, but are still not directly
accessible from objects of different classes.

Constructing an object

To create a new instance of class Foo, you write Foo.new(...) where (...) holds some number of arguments
(where, as with all method calls, the parentheses are optional and when there are zero or one arguments it
is preferred to omit them). The call to Foo.new will create a new instance of Foo and then, before Foo.new

returns, call the new object’s initialize method with all the arguments passed to Foo.new. That is, the
method initialize is special and serves the same role as constructors in other object-oriented languages.

Typical behavior for initialize is to create and initialize instance variables. In fact, the normal approach
is for initialize always to create the same instance variables and for no other methods in the class to
create instance variables. But Ruby does not require this and it may be useful on occasion to violate these
conventions. Therefore, different instances of a class can have different instance variables.

Expressions and Local Variables

Most expressions in Ruby are actually method calls. Even e1 + e2 is just syntactic sugar for e1.+ e2, i.e.,
call the + method on the result of e1 with the result of e2. Another example is puts e, which prints the
result of e (after calling its to_s method to convert it to a string) and then a newline. It turns out puts is
a method in all objects (it is defined in class Object and all classes are subclasses of Object — we discuss
subclasses later), so puts e is just self.puts e.

Not every expression is a method call. The most common other expression is some form of conditional.
There are various ways to write conditionals; see the example code posted with the lecture materials. As
discussed below, loop expressions are rare in Ruby code.

Like instance variables, variables local to a method do not have to be declared: The first time you assign to
x in a method will create the variable. The scope of the variable is the entire method body. It is a run-time
error to use a local variable that has not yet been defined. (In contrast, it is not a run-time error to use
an instance variable that has not yet been defined. Instead you get back the nil object, which is discussed
more below.)

Class Constants and Class Methods

A class constant is a lot like a class variable (see above) except that (1) it starts with a capital letter instead
of @@, (2) you should not mutate it, and (3) it is publicly visible. Outside of an instance of class C, you can
access a constant Foo of C with the syntax C::Foo. An example is Math::PI.1

A class method is like an ordinary method (called an instance method to distinguish from class methods)
except (1) it does not have access to any of the instance variables or instance methods of an instance of the
class and (2) you can call it from outside the class C where it is defined with C.method_name args. There
are various ways to define a class method; the most common is the somewhat hard-to-justify syntax:

def self.method_name args

...

end

Class methods are called static methods in Java and C#.

1Actually, Math is a module, not a class, so this is not technically an example, but modules can also have constants.
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Visibility and Getters/Setters

As mentioned above, instance variables are private to an object: only method calls with that object as the
receiver can read or write the fields. As a result, the syntax is @foo and the self-object is implied. Notice
even other instances of the same class cannot access the instance variables. This is quite object-oriented:
you can interact with another object only by sending it messages.

Methods can have different visibilities. The default is public, which means any object can call the method.
There is also private, which, like with instance variables, allows only the object itself to call the method
(from other methods in the object). In-between is protected: A protected method can be called by any
object that is an instance of the same class or any subclass of the class.

There are various ways to specify the visibility of a method. Perhaps the simplest is within the class definition
you can put public, private, or protected between method definitions. Reading top-down, the most recent
visibility specified holds for all methods until the next visibility is specified. There is an implicit public

before the first method in the class.

To make the contents of an instance variable available and/or mutable, we can easily define getter and setter
methods, which by convention we can give the same name as the instance variable. For example:

def foo

@foo

end

def foo= x

@foo = x

end

If these methods are public, now any code can access the instance variable @foo indirectly, by calling foo or
foo=. It sometimes makes sense to instead make these methods protected if only other objects of the same
class (or subclasses) should have access to the instance variables.

As a cute piece of syntactic sugar, when calling a method that ends in a = character, you can have spaces
before the =. Hence you can write e.foo = bar instead of e.foo= bar.

The advantage of the getter/setter approach is it remains an implementation detail that these methods are
implemented as getting and setting an instance variable. We, or a subclass implementer, could change this
decision later without clients knowing. We can also omit the setter to ensure an instance variable is not
mutated except perhaps by a method of the object.

As an example of a “setter method” that is not actually a setter method, a class could define:

def celsius_temp= x

@kelvin_temp = x + 273.15

end

A client would likely imagine the class has a @celsius_temp instance variable, but in fact it (presumably)
does not. This is a good abstraction that allows the implementation to change.

Because getter and setter methods are so common, there is shorter syntax for defining them. For example,
to define getters for instance variables @x, @y, and @z and a setter for @x, the class definition can just include:

attr_reader :y, :z # defines getters

attr_accessor :x # defines getters and setters
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A final syntactic detail: If a method m is private, you can only call it as m or m(args). A call like x.m or
x.m(args) would break visibility rules. A call like self.m or self.m(args) would not break visibility, but
still is not allowed.

Some Syntax, Semantics, and Scoping To Get Used To

Ruby has a fair number of quirks that are often convenient for quickly writing useful programs but may take
some getting used to. Here are some examples; you will surely discover more.

• There are several forms of conditional expressions, including e1 if e2 (all on one line), which evaluates
e1 only if e2 is true (i.e., it reads right-to-left).

• Newlines are often significant. For example, you can write

if e1

e2

else

e3

end

But if you want to put this all on one line, then you need to write if e1 then e2 else e3 end. Note,
however, indentation is never significant (only a matter of style).

• Conditionals can operate on any object and treat every object as “true” with two exceptions: false

and nil.

• As discussed above, you can define a method with a name that ends in =, for example:

def foo= x

@blah = x * 2

end

As expected, you can write e.foo=(17) to change e’s @blah instance variable to be 34. Better yet, you
can adjust the parentheses and spacing to write e.foo = 17. This is just syntactic sugar. It “feels”
like an assignment statement, but it is really a method call. Stylistically you do this for methods that
mutate an object’s state in some “simple” way (like setting a field).

• Where you write this in Java/C#/C++, you write self in Ruby.

• Remember variables (local, instance, or class) get automatically created by assignment, so if you mis-
spell a variable in an assignment, you end up just creating a different variable.

Everything is an Object

Everything is an object, including numbers, booleans, and nil (which is often used like null in Java). For
example, -42.abs evaluates to 42 because the Fixnum class defines the method abs to compute the absolute
value and -42 is an instance of Fixnum. (Of course, this is a silly expression, but x.abs where x currently
holds -42 is reasonable.)

All objects have a nil? method, which the class of nil defines to return true but other classes define to
return false. Like in ML and Racket, every expression produces a result, but when no particular result
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makes sense, nil is preferred style (much like ML’s () and Racket’s void-object). That said, it is often
convenient for methods to return self so that subsequent method calls to the same object can be put
together. For example, if the foo method returns self, then you can write x.foo(14).bar("hi") instead
of

x.foo(14)

x.bar("hi")

There are many methods to support reflection — learning about objects and their definition during program
execution — that are defined for all objects. For example, the method methods returns an array of the
names of the methods defined on an object and the method class returns the class of the object.2 Such
reflection is occasionally useful in writing flexible code. It is also useful in the REPL or for debugging.

The Top-Level

You can define methods, variables, etc. outside of an explicit class definition. The methods are implicitly
added to class Object, which makes them available from within any object’s methods. Hence all methods
are really part of some class.3

Top-level expressions are evaluated in order when the program runs. So instead of Ruby specifying a main
class and method with a special name (like main), you can just create an object and call a method on it at
top-level.

Class Definitions are Dynamic

A Ruby program (or a user of the REPL) can change class definitions while a Ruby program is running.
Naturally this affects all users of the class. Perhaps surprisingly, it even affects instances of the class that
have already been created. That is, if you create an instance of Foo and then add or delete methods in Foo,
then the already-created object “sees” the changes to its behavior. After all, every object has a class and
the (current) class (definition) defines an object’s behavior.

This is usually dubious style because it breaks abstractions, but it leads to a simpler language definition:
defining classes and changing their definitions is just a run-time operation like everything else. It can certainly
break programs: If I change or delete the + method on numbers, I would not expect many programs to keep
working correctly. It can be useful to add methods to existing classes, especially if the designer of the class
did not think of a useful helper method.

The syntax to add or change methods is particularly simple: Just give a class definition including method
definitions for a class that is already defined. The method definitions either replace definitions for methods
previously defined (with the same name method name) or are added to the class (if no method with the
name previously existed).

Duck Typing

Duck typing refers to the expression, “If it walks like a duck and quacks like a duck, then it’s a duck” though
a better conclusion might be, “then there is no reason to concern yourself with the possibility that it might

2This class is itself just another object. Yes, even classes are objects.
3This is not entirely true because modules are not classes.
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not be a duck.” In Ruby, this refers to the idea that the class of an object (e.g., “Duck”) passed to a method
is not important so long as the object can respond to all the messages it is expected to (e.g., “walk to x” or
“quack now”).

For example, consider this method:

def mirror_update pt

pt.x = pt.x * -1

end

It is natural to view this as a method that must take an instance of a particular class Point (not shown
here) since it uses methods x and x= defined in it. And the x getter must return a number since the result
of pt.x is sent the * message with -1 for multiplication.

But this method is more generally useful. It is not necessary for pt to be an instance of Point provided it
has methods x and x=.

Moreover, the x and x= methods need not be a getter and setter for an instance variable @x.

Even more generally, we do not need the x method to return a number. It just has to return some object
that can respond to the * message with argument -1.

Duck typing can make code more reusable, allowing clients to make “fake ducks” and still use your code.
In Ruby, duck typing basically “comes for free” as long you do not explicitly check that arguments are
instances of particular classes using methods like instance_of? or is_a? (discussed below when we introduce
subclassing).

Duck typing has disadvantages. The most lenient specification of how to use a method ends up describing the
whole implementation of a method, in particular what messages it sends to what objects. If our specification
reveals all that, then almost no variant of the implementation will be equivalent. For example, if we know
i is a number (and ignoring clients redefining methods in the classes for numbers), then we can replace i+i

with i*2 or 2*i. But if we just assume i can receive the + message with itself as an argument, then we
cannot do these replacements since i may not have a * method (breaking i*2) or it may not be the sort of
object that 2 expects as an argument to * (breaking 2*i).

Arrays

The Array class is very commonly used in Ruby programs and there is special syntax that is often used
with it. Instances of Array have all the uses that arrays in other programming languages have — and much,
much more. Compared to arrays in Java/C#/C/etc., they are much more flexible and dynamic with fewer
operations being errors. The trade-off is they can be less efficient, but this is usually not a concern for
convenient programming in Ruby. In short, all Ruby programmers are familiar with Ruby arrays because
they are the standard choice for any sort of collection of objects.

In general, an array is a mapping from numbers (the indices) to objects. The syntax [e1,e2,e3,e4] creates a
new array with four objects in it: The result of e1 is in index 0, the result of e2 is in index 1, and so on. (Notice
the indexing starts at 0.) There are other ways to create arrays. For example, Array.new(x) creates an array
of length x with each index initially mapped to nil. We can also pass blocks (see below for what blocks
actually are) to the Array.new method to initialize array elements. For example, Array.new(x) { 0 }

creates an array of length x with all elements initialized to 0 and Array.new(5) {|i| -i } creates the
array [0,-1,-2,-3,-4].

The syntax for getting and setting array elements is similar to many other programming languages: The
expression a[i] gets the element in index i of the array referred to by a and a[i] = e sets the same array
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index. As you might suspect in Ruby, we are really just calling methods on the Array class when we use
this syntax.

Here are some simple ways Ruby arrays are more dynamic and less error-causing than you might expect
compared to other programming languages:

• As usual in a dynamically typed language, an array can hold objects that are instances of different
classes, for example [14, "hi", false, 34].

• Negative array indices are interpreted from the end of the array. So a[-1] retrieves the last element
in the array a, a[-2] retrieves the second-to-last element, etc.

• There are no array-bounds errors. For the expression a[i], if a holds fewer than i+1 objects, then the
result will just be nil. Setting such an index is even more interesting: For a[i]=e, if a holds fewer
than i+1 objects, then the array will grow dynamically to hold i+1 objects, the last of which will be
the result of e, with the right number of nil objects between the old last element and the new last
element.

• There are many methods and operations defined in the standard library for arrays. If the operation
you need to perform on an array is at all general-purpose, peruse the documentation since it is surely
already provided. As two examples, the + operator is defined on arrays to mean concatenation (a
new array where all of the left-operand elements precede all of the right-operand elements), and the |

operator is like the + operator except it removes all duplicate elements from the result.

In addition to all the conventional uses for arrays, Ruby arrays are also often used where in other languages
we would use other constructs for tuples, stacks, or queues. Tuples are the most straightforward usage. After
all, given dynamic typing and less concern for efficiency, there is little reason to have separate constructs for
tuples and arrays. For example, for a triple, just use a 3-element array.

For stacks, the Array class defines convenient methods push and pop. The former takes an argument, grows
the array by one index, and places the argument at the new last index. The latter shrinks the array by one
index and returns the element that was at the old last index. Together, this is exactly the last-in-first-out
behavior that defines the behavior of a stack. (How this is implemented in terms of actually growing and
shrinking the underlying storage for the elements is of concern only in the implementation of Array.)

For queues, we can use push to add elements as just described and use the shift method to dequeue
elements. The shift method returns the object at index 0 of the array, removes it from the array, and shifts
all the other elements down one index, i.e., the object (if any) previously at index 1 is now at index 0, etc.
Though not needed for simple queues, Array also has an unshift method that is like push except it puts
the new object at index 0 and moves all other objects up by 1 index (growing the array size by 1).

Arrays are even more flexible than described here. For example, there are operations to replace any sequence
of array elements with the elements of any other array, even if the other array has a different length than
the sequence being replaced (hence changing the length of the array).

Overall, this flexible treatment of array sizes (growing and shrinking) is different from arrays in some other
programming languages, but it is consistent with treating arrays as maps from numeric indices to objects.

What we have not shown so far are operations that perform some computation using all the contents of an
array, such as mapping over the elements to make a new array, or computing a sum of them. That is because
the Ruby idioms for such computations use blocks, which we introduce next.
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Passing Blocks

While Ruby has while loops and for loops not unlike Java, most Ruby code does not use them. Instead,
many classes have methods that take blocks. These blocks are almost closures. For example, integers have
a times method that takes a block and executes it the number of times you would imagine. For example,

x.times { puts "hi" }

prints "hi" 3 times if x is bound to 3 in the environment.

Blocks are closures in the sense that they can refer to variables in scope where the block is defined. For
example, after this program executes, y is bound to 10:

y = 7

[4,6,8].each { y += 1 }

Here [4,6,8] is an array with with 3 elements. Arrays have a method each that takes a block and executes
it once for each element. Typically, however, we want the block to be passed each array element. We do
that like this, for example to sum an array’s elements and print out the running sum at each point:

sum = 0

[4,6,8].each { |x|

sum += x

puts sum

}

Blocks, surprisingly, are not objects. You cannot pass them as “regular” arguments to a method. Rather,
any method can be passed either 0 or 1 blocks, separate from the other arguments. As seen in the examples
above, the block is just put to the right of the method call. It is also after any other “regular” arguments.
For example, the inject method is like the fold function we studied in ML and we can pass it an initial
accumulator as a regular argument:

sum = [4,6,8].inject(0) { |acc,elt| acc + elt }

(It turns out the initial accumulator is optional. If omitted, the method will use the array element in index
0 as the initial accumulator.)

In addition to the braces syntax shown here, you can write a block using do instead of { and end instead of
}. This is generally considered better style for blocks more than one line long.

When calling a method that takes a block, you should know how many arguments will be passed to the block
when it is called. For the each method in Array, the answer is 1, but as the first example showed, you can
ignore arguments if you have no need for them by omitting the |...|.

Many collections, including arrays, have a variety of block-taking methods that look very familiar to func-
tional programmers, including map. As another example, the select method is like the function we called
filter. Other useful iterators include any? (returns true if the block returns true for any element of the
collection), all? (returns true if the block returns true for every element of the collection), and several more.
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Using Blocks

While many uses of blocks involve calling methods in the standard library, you can also define your own
methods that take blocks. (The large standard library just makes it somewhat rare to need to do this.)

You can pass a block to any method. The method body calls the block using the yield keyword. For
example, this code prints "hi" 3 times:

def foo x

if x

yield

else

yield

yield

end

end

foo true { puts "hi" }

foo false { puts "hi" }

To pass arguments to a block, you put the arguments after the yield, e.g., yield 7 or yield(8,"str").

Using this approach, the fact that a method may expect a block is implicit; it is just that its body might
use yield. An error will result if yield is used and no block was passed. The behavior when the block and
the yield disagree on the number of arguments is somewhat flexible and not described in full detail here.
A method can use the block_given? primitive to see if the caller provided a block. You are unlikely to use
this method often: If a block is needed, it is conventional just to assume it is given and have yield fail if it is
not. In situations where a method may or may not expect a block, often other regular arguments determine
whether a block should be present. If not, then block_given? is appropriate.

Here is a recursive method that counts how many times it calls the block (with increasing numbers) before
the block returns a true result.

def count i

if yield i

1

else

1 + (count(i+1) {|x| yield x})

end

end

The odd thing is that there is no direct way to pass the caller’s block as the callee’s block argument. But
we can create a new block {|x| yield x} and the lexical scope of the yield in its body will do the right
thing. If blocks were actually function closures that we could pass as objects, then this would be unnecessary
function wrapping.

The Proc Class

Blocks are not quite closures because they are not objects. We cannot store them in a field, pass them as a
regular method argument, assign them to a variable, put them in an array, etc. (Notice in ML and Racket, we
could do the equivalent things with closures.) Hence we say that blocks are not “first-class values” because
a first-class value is something that can be passed and stored like anything else in the language.
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However, Ruby has “real” closures too: The class Proc has instances that are closures. The method call in
Proc is how you apply the closure to arguments, for example x.call (for no arguments) or x.call(3,4).

To make a Proc out of a block, you can write lambda { ... } where { ... } is any block. Interestingly,
lambda is not a keyword. It is just a method in class Object (and every class is a subclass of Object, so
lambda is available everywhere) that creates a Proc out of a block it is passed. You can define your own
methods that do this too; consult the documentation for the syntax to do this.

Usually all we need are blocks, such as in these examples that pass blocks to compute something about an
array:

a = [3,5,7,9]

b = a.map {|x| x + 1}

i = b.count {|x| x >= 6}

But suppose we wanted to create an array of blocks, i.e., an array where each element was something we
could “call” with a value. You cannot do this in Ruby because arrays hold objects and blocks are not objects.
So this is an error:

c = a.map {|x| {|y| x >= y} } # wrong, a syntax error

But we can use lambda to create an array of instances of Proc:

c = a.map {|x| lambda {|y| x >= y} }

Now we can send the call message to elements of the c array:

c[2].call 17

j = c.count {|x| x.call(5) }

Ruby’s design is an interesting contrast from ML and Racket, which just provide full closures as the natural
choice. In Ruby, blocks are more convenient to use than Proc objects and suffice in most uses, but program-
mers still have Proc objects when needed. Is it better to distinguish blocks from closures and make the more
common case easier with a less powerful construct, or is it better just to have one general fully powerful
feature?

Hashes and Ranges

The Hash and Range classes are two standard-library classes that are also very common but probably a little
less common than arrays. Like arrays, there is special built-in syntax for them. They are also similar to
arrays and support many of the same iterator methods, which helps us re-enforce the concept that “how to
iterate” can be separated from “what to do while iterating.”

A hash is like an array except the mapping is not from numeric indices to objects. Instead, the mapping is
from (any) objects to objects. If a maps to b, we call a a key and b a value. Hence a hash is a collection that
maps a set of keys (all keys in a hash are distinct) to values, where the keys and values are just objects. We
can create a hash with syntax like this:

{"SML" => 7, "Racket" => 12, "Ruby" => 42}
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As you might expect, this creates a hash with keys that here are strings. It is also common (and more
efficient) to use Ruby’s symbols for hash keys as in:

{:sml => 7, :racket => 12, :ruby => 42}

We can get and set values in a hash using the same syntax as for arrays, where again the key can be anything,
such as:

h1["a"] = "Found A"

h1[false] = "Found false"

h1["a"]

h1[false]

h1[42]

There are many methods defined on hashes. Useful ones include keys (return an array of all keys), values
(similar for values), and delete (given a key, remove it and its value from the hash). Hashes also support
many of the same iterators as arrays, such as each and inject, but some take the keys and the values as
arguments, so consult the documentation.

A range represents a contiguous sequence of numbers (or other things, but we will focus on numbers). For
example 1..100 represents the integers 1, 2, 3, ..., 100. We could use an array like Array.new(100) {|i| i},
but ranges are more efficiently represented and, as seen with 1..100, there is more convenient syntax to
create them. Although there are often better iterators available, a method call like (0..n).each {|i| e}

is a lot like a for-loop from 0 to n in other programming languages.

It is worth emphasizing that duck typing lets us use ranges in many places where we might naturally expect
arrays. For example, consider this method, which counts how many elements of a have squares less than 50:

def foo a

a.count {|x| x*x < 50}

end

We might naturally expect foo to take arrays, and calls like foo [3,5,7,9] work as expected. But we can
pass to foo any object with a count method that expects a block taking one argument. So we can also do
foo (2..10), which evaluates to 6.

Subclassing and Inheritance

Basic Idea and Terminology

Subclassing is an essential feature of class-based OOP. If class C is a subclass of D, then every instance of C
is also an instance of D. The definition of C inherits the methods of D, i.e., they are part of C’s definition too.
Moreover, C can extend by defining new methods that C has and D does not. And it can override methods,
by changing their definition from the inherited definition. In Ruby, this is much like in Java. In Java, a
subclass also inherits the field definitions of the superclass, but in Ruby fields (i.e., instance variables) are
not part of a class definition because each object instance just creates its own instance variables.

Every class in Ruby except Object has one superclass.4 The classes form a tree where each node is a class
and the parent is its superclass. The Object class is the root of the tree. In class-based languages, this is

4Actually, the superclass of Object is BasicObject and BasicObject has no superclass, but this is not an important detail,
so we will ignore it.
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called the class hierarchy. By the definition of subclassing, a class has all the methods of all its ancestors in
the tree (i.e., all nodes between it and the root, inclusive), subject to overriding.

Some Ruby Specifics

• A Ruby class definition specifies a superclass with class C < D ... end to define a new class C with
superclass D. Omitting the < D implies < Object, which is what our examples so far have done.

• Ruby’s built-in methods for reflection can help you explore the class hierarchy. Every object has a
class method that returns the class of the object. Consistently, if confusingly at first, a class is itself
an object in Ruby (after all, every value is an object). The class of a class is Class. This class defines
a method superclass that returns the superclass.

• Every object also has methods is_a? and instance_of?. The method is_a? takes a class (e.g.,
x.is_a? Integer) and returns true if the receiver is an instance of Integer or any (transitive) subclass
of Integer, i.e., if it is below Integer in the class hierarchy. The method instance_of? is similar but
returns true only if the receiver is an instance of the class exactly, not a subclass. (Note that in Java
the primitive instanceof is analogous to Ruby’s is_a?.)

Using methods like is_a? and instanceof is “less object-oriented” and therefore often not preferred style.
They are in conflict with duck typing.

A First Example: Point and ColorPoint

Here are definitions for simple classes that describe simple two-dimensional points and a subclass that adds
a color (just represented with a string) to instances.

class Point

attr_accessor :x, :y

def initialize(x,y)

@x = x

@y = y

end

def distFromOrigin

Math.sqrt(@x * @x + @y * @y)

end

def distFromOrigin2

Math.sqrt(x * x + y * y)

end

end

class ColorPoint < Point

attr_accessor :color

def initialize(x,y,c="clear")

super(x,y)

@color = c

end

end

There are many ways we could have defined these classes. Our design choices here include:

• We make the @x, @y, and @color instance variables mutable, with public getter and setter methods.

• The default “color” for a ColorPoint is "clear".
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• For pedagogical purposes revealed below, we implement the distance-to-the-origin in two different ways.
The distFromOrigin method accesses instance variables directly whereas distFromOrigin2 uses the
getter methods on self. Given the definition of Point, both will produce the same result.

The initialize method in ColorPoint uses the super keyword, which allows an overriding method to call
the method of the same name in the superclass. This is not required when constructing Ruby objects, but
it is often desired.

Why Use Subclassing?

We now consider the style of defining colored-points using a subclass of the class Point as shown above. It
turns out this is good OOP style in this case. Defining ColorPoint is good style because it allows us to
reuse much of our work from Point and it makes sense to treat any instance of ColorPoint as though it “is
a” Point.

But there are several alternatives worth exploring because subclassing is often overused in object-oriented
programs, so it is worth considering at program-design time whether the alternatives are better than sub-
classing.

First, in Ruby, we can extend and modify classes with new methods. So we could simply change the Point

class by replacing its initialize method and adding getter/setter methods for @color. This would be
appropriate only if every Point object, including instances of all other subclasses of Point, should have a
color or at least having a color would not mess up anything else in our program. Usually modifying classes
is not a modular change — you should do it only if you know it will not negatively affect anything in the
program using the class.

Second, we could just define ColorPoint “from scratch,” copying over (or retyping) the code from Point.
In a dynamically typed language, the difference in semantics (as opposed to style) is small: instances of
ColorPoint will now return false if sent the message is_a? with argument Point, but otherwise they will
work the same. In languages like Java/C#/C++, superclasses have effects on static typing. One advantage
of not subclassing Point is that any later changes to Point will not affect ColorPoint — in general in
class-based OOP, one has to worry about how changes to a class will affect any subclasses.

Third, we could have ColorPoint be a subclass of Object but have it contain an instance variable, call it
@pt, holding an instance of Point. Then it would need to define all of the methods defined in Point to
forward the message to the object in @pt. Here are two examples, omitting all the other methods (x=, y, y=,
distFromOrigin, distFromOrigin2):

def initialize(x,y,c="clear")

@pt = Point.new(x,y)

@color = c

end

def x

@pt.x # forward the message to the object in @pt

end

This approach is bad style since again subclassing is shorter and we want to treat a ColorPoint as though
it “is a” Point. But in general, many programmers in object-oriented languages overuse subclassing. In
situations where you are making a new kind of data that includes a pre-existing kind of data as a separate
sub-part of it, this instance-variable approach is better style.
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Overriding and Dynamic Dispatch

Now let’s consider a different subclass of Point, which is for three-dimensional points:

class ThreeDPoint < Point

attr_accessor :z

def initialize(x,y,z)

super(x,y)

@z = z

end

def distFromOrigin

d = super

Math.sqrt(d * d + @z * @z)

end

def distFromOrigin2

d = super

Math.sqrt(d * d + z * z)

end

end

Here, the code-reuse advantage is limited to inheriting methods x, x=, y, and y=, as well as using other
methods in Point via super. Notice that in addition to overriding initialize, we used overriding for
distFromOrigin and distFromOrigin2.

Computer scientists have been arguing for decades about whether this subclassing is good style. On the one
hand, it does let us reuse quite a bit of code. On the other hand, one could argue that a ThreeDPoint is not
conceptually a (two-dimensional) Point, so passing the former when some code expects the latter could be
inappropriate. Others say a ThreeDPoint is a Point because you can “think of it” as its projection onto the
plane where z equals 0. We will not resolve this legendary argument, but you should appreciate that often
subclassing is bad/confusing style even if it lets you reuse some code in a superclass.

The argument against subclassing is made stronger if we have a method in Point like distance that takes
another (object that behaves like a) Point and computes the distance between the argument and self.
If ThreeDPoint wants to override this method with one that takes another (object that behaves like a)
ThreeDPoint, then ThreeDPoint instances will not act like Point instances: their distance method will
fail when passed an instance of Point.

We now consider a much more interesting subclass of Point. Instances of this class PolarPoint behave
equivalently to instances of Point except for the arguments to initialize, but instances use an internal
representation in terms of polar coordinates (radius and angle):

class PolarPoint < Point

def initialize(r,theta)

@r = r

@theta = theta

end

def x

@r * Math.cos(@theta)

end

def y

@r * Math.sin(@theta)

end
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def x= a

b = y # avoids multiple calls to y method

@theta = Math.atan(b / a)

@r = Math.sqrt(a*a + b*b)

self

end

def y= b

a = y # avoid multiple calls to y method

@theta = Math.atan(b / a)

@r = Math.sqrt(a*a + b*b)

self

end

def distFromOrigin

@r

end

# distFromOrigin2 already works!!

end

Notice instances of PolarPoint do not have instance variables @x and @y, but the class does override the x,
x=, y, and y= methods so that clients cannot tell the implementation is different (modulo round-off of floating-
point numbers): they can use instances of Point and PolarPoint interchangeably. A similar example in
Java would still have fields from the superclass, but would not use them. The advantage of PolarPoint over
Point, which admittedly is for sake of example, is that distFromOrigin is simpler and more efficient.

The key point of this example is that the subclass does not override distFromOrigin2, but the
inherited method works correctly. To see why, consider the definition in the superclass:

def distFromOrigin2

Math.sqrt(x * x + y * y)

end

Unlike the definition of distFromOrigin, this method uses other method calls for the arguments to the
multiplications. Recall this is just syntactic sugar for:

def distFromOrigin2

Math.sqrt(self.x() * self.x() + self.y() * self.y())

end

In the superclass, this can seem like an unnecessary complication since self.x() is just a method that
returns @x and methods of Point can access @x directly, as distFromOrigin does.

However, overriding methods x and y in a subclass of Point changes how distFromOrigin2 behaves in
instances of the subclass. Given a PolarPoint instance, its distFromOrigin2 method is defined with the
code above, but when called, self.x and self.y will call the methods defined in PolarPoint, not the
methods defined in Point.

This semantics goes by many names, including dynamic dispatch, late binding, and virtual method calls.
There is nothing quite like it in functional programming, since the way self is treated in the environment
is special, as we discuss in more detail next.
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The Precise Definition of Method Lookup

The purpose of this discussion is to consider the semantics of object-oriented language constructs, particu-
larly calls to methods, as carefully as we have considered the semantics of functional language constructs,
particularly calls to closures. As we will see, the key distinguishing feature is what self is bound to in the
environment when a method is called. The correct definition is what we call dynamic dispatch.

The essential question we will build up to is given a call e0.m(e1,e2,...en), what are the rules for “looking
up” what method definition m we call, which is a non-trivial question in the presence of overriding. But first,
let us notice that in general such questions about how we “look up” something are often essential to the
semantics of a programming language. For example, in ML and Racket, the rules for looking up variables
led to lexical scope and the proper treatment of function closures. And in Racket, we had three different
forms of let-expressions exactly because they have different semantics for how to look up variables in certain
subexpressions.

In Ruby, the variable-lookup rules for local variables in methods and blocks are not too different from in ML
and Racket despite some strangeness from variables not being declared before they are used. But we also
have to consider how to “look up” instance variables, class variables, and methods. In all cases, the answer
depends on the object bound to self — and self is treated specially.

In any environment, self maps to some object, which we think of as the “current object” — the object
currently executing a method. To look up an instance variable @x, we use the object bound to self – each
object has its own state and we use self’s state. To look up a class variable @@x, we just use the state of
the object bound to self.class instead. To look up a method m for a method call is more sophisticated...

In class-based object-oriented languages like Ruby, the rule for evaluating a method call like e0.m(e1,...,en)
is:

• Evaluate e0, e1, ..., en to values, i.e., objects obj0, obj1, ..., objn.

• Get the class of obj0. Every object “knows its class” at run-time. Think of the class as part of the
state of obj0.

• Suppose obj0 has class A. If m is defined in A, call that method. Otherwise recur with the superclass
of A to see if it defines m. Raise a “method missing” error if neither A nor any of its superclasses define
m. (Actually, in Ruby the rule is actually to instead call a method called method_missing, which any
class can define, so we again start looking in A and then its superclass. But most classes do not define
method_missing and the definition of it in Object raises the error we expect.)

• We have now found the method to call. If the method has formal arguments (i.e., argument names
or parameters) x1, x2, . . . , xn, then the environment for evaluating the body will map x1 to obj1,
x2 to obj2, etc. But there is one more thing that is the essence of object-oriented programming and
has no real analogue in functional programming: We always have self in the environment. While
evaluating the method body, self is bound to obj0, the object that is the “receiver” of
the message.

The binding of self in the callee as described above is what is meant by the synonyms “late-binding,”
“dynamic dispatch,” and “virtual method calls.” It is central to the semantics of Ruby and other OOP
languages. It means that when the body of m calls a method on self (e.g., self.someMethod 34 or just
someMethod 34), we use the class of obj0 to resolve someMethod, not necessarily the class of the method we
are executing. This is why the PolarPoint class described above works as it does.

There are several important comments to make about this semantics:
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• Ruby’s mixins complicate the lookup rules a bit more, so the rules above are actually simplified by
ignoring mixins. When we study mixins, we will revise the method-lookup semantics accordingly.

• This semantics is quite a bit more complicated than ML/Racket function calls. It may not seem that
way if you learned it first, which is common because OOP and dynamic dispatch seem to be a focus in
many introductory programming courses. But it is truly more complicated: we have to treat the notion
of self differently from everything else in the language. Complicated does not necessarily mean it is
inferior or superior; it just means the language definition has more details that need to be described.
This semantics has clearly proved useful to many people.

• Java and C# have significantly more complicated method-lookup rules. They do have dynamic dispatch
as described here, so studying Ruby should help understand the semantics of method lookup in those
languages. But they also have static overloading, in which classes can have multiple methods with the
same name but taking different types (or numbers) of arguments. So we need to not just find some
method with the right name, but we have to find one that matches the types of the arguments at
the call. Moreover, multiple methods might match and the language specifications have a long list of
complicated rules for finding the best match (or giving a type error if there is no best match). In these
languages, one method overrides another only if its arguments have the same type and number. None
of this comes up in Ruby where “same method name” always means overriding and we have no static
type system. In C++, there are even more possibilities: we have static overloading and different forms
of methods that either do or do not support dynamic dispatch.

Dynamic Dispatch Versus Closures

To understand how dynamic dispatch differs from the lexical scope we used for function calls, consider this
simple ML code that defines two mutually recursive functions:

fun even x = if x=0 then true else odd (x-1)

and odd x = if x=0 then false else even (x-1)

This creates two closures that both have the other closure in their environment. If we later shadow the even

closure with something else, e.g.,

fun even x = false

that will not change how odd behaves. When odd looks up even in the environment where odd was defined,
it will get the function on the first line above. That is “good” for understanding how odd works just from
looking where is defined. On the other hand, suppose we wrote a better version of even like:

fun even x = (x mod 2) = 0

Now our odd is not “benefiting from” this optimized implementation.

In OOP, we can use (abuse?) subclassing, overriding, and dynamic dispatch to change the behavior of odd
by overriding even:

class A

def even x

if x==0 then true else odd(x-1) end

end

20



def odd x

if x==0 then false else even(x-1) end

end

end

class B < A

def even x # changes B’s odd too!

x % 2 == 0

end

end

Now (B.new.odd 17) will execute faster because odd’s call to even will resolve to the method in B – all
because of what self is bound to in the environment. While this is certainly convenient in the short example
above, it has real drawbacks. We cannot look at one class (A) and know how calls to the code there will
behave. In a subclass, what if someone overrode even and did not know that it would change the behavior
of odd? Basically, any calls to methods that might be overridden need to be thought about very carefully. It
is likely often better to have private methods that cannot be overridden to avoid problems. Yet overriding
and dynamic dispatch is the biggest thing that distinguishes object-oriented programming from functional
programming.

Implementing Dynamic Dispatch Manually in Racket

Let’s now consider coding up objects and dynamic dispatch in Racket using nothing more than pairs and
functions.5 This serves two purposes:

• It demonstrates that one language’s semantics (how the primitives like message send work in the
language) can typically be coded up as an idiom (simulating the same behavior via some helper
functions) in another language. This can help you be a better programmer in different languages that
may not have the features you are used to.

• It gives a lower-level way to understand how dynamic dispatch “works” by seeing how we would do
it manually in another language. An interpreter for an object-oriented language would have to do
something similar for automatically evaluating programs in the language.

Also notice that we did an analogous exercise to better understand closures earlier in the course: We showed
how to get the effect of closures in Java using objects and interfaces or in C using function pointers and
explicit environments.

Our approach will be different from what Ruby (or Java for that matter) actually does in these ways:

• Our objects will just contain a list of fields and a list of methods. This is not “class-based,” in which
an object would have a list of fields and a class-name and then the class would have the list of methods.
We could have done it that way instead.

• Real implementations are more efficient. They use better data structures (based on arrays or hashta-
bles) for the fields and methods rather than simple association lists.

Nonetheless, the key ideas behind how you implement dynamic dispatch still come through. By the way, we
are wise to do this in Racket rather than ML, where the types would get in our way. In ML, we would likely

5Though we did not study it, Racket has classes and objects, so you would not actually want to do this in Racket. The
point is to understand dynamic dispatch by manually coding up the same idea.
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end up using “one big datatype” to give all objects and all their fields the same type, which is basically
awkwardly programming in a Racket-like way in ML. (Conversely, typed OOP languages are often no
friendlier to ML-style programming unless they add separate constructs for generic types and closures.)

Our objects will just have fields and methods:

(struct obj (fields methods))

We will have fields hold an immutable list of mutable pairs where each element pair is a symbol (the field
name) and a value (the current field contents). With that, we can define helper functions get and set that
given an object and a field-name, return or mutate the field appropriately. Notice these are just plain Racket
functions, with no special features or language additions. We do need to define our own function, called
assoc-m below, because Racket’s assoc expects an immutable list of immutable pairs.

(define (assoc-m v xs)

(cond [(null? xs) #f]

[(equal? v (mcar (car xs))) (car xs)]

[#t (assoc-m v (cdr xs))]))

(define (get obj fld)

(let ([pr (assoc-m fld (obj-fields obj))])

(if pr

(mcdr pr)

(error "field not found"))))

(define (set obj fld v)

(let ([pr (assoc-m fld (obj-fields obj))])

(if pr

(set-mcdr! pr v)

(error "field not found"))))

More interesting is calling a method. The methods field will also be an association list mapping method
names to functions (no mutation needed since we will be less dynamic than Ruby). The key to getting
dynamic dispatch to work is that these functions will all take an extra explicit argument that is implicit in
languages with built-in support for dynamic dispatch. This argument will be “self” and our Racket helper
function for sending a message will simply pass in the correct object:

(define (send obj msg . args)

(let ([pr (assoc msg (obj-methods obj))])

(if pr

((cdr pr) obj args)

(error "method not found" msg))))

Notice how the function we use for the method gets passed the “whole” object obj, which will be used
for any sends to the object bound to self. (The code above uses Racket’s support for variable-argument
functions because it is convenient — we could have avoided it if necessary. Here, send can take any number
of arguments greater than or equal to 2. The first argument is bound to obj, the second to msg, and all
others are put in a list (in order) that is bound to args. Hence we expect (cdr pr) to be a function that
takes two arguments: we pass obj for the first argument and the list args for the second argument.)

Now we can define make-point, which is just a Racket function that produces a point object:
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(define (make-point _x _y)

(obj

(list (mcons ’x _x)

(mcons ’y _y))

(list (cons ’get-x (lambda (self args) (get self ’x)))

(cons ’get-y (lambda (self args) (get self ’y)))

(cons ’set-x (lambda (self args) (set self ’x (car args))))

(cons ’set-y (lambda (self args) (set self ’y (car args))))

(cons ’distToOrigin

(lambda (self args)

(let ([a (send self ’get-x)]

[b (send self ’get-y)])

(sqrt (+ (* a a) (* b b)))))))))

Notice how each of the methods takes a first argument, which we just happen to call self, which has no
special meaning here in Racket. We then use self as an argument to get, set, and send. If we had some
other object we wanted to send a message to or access a field of, we would just pass that object to our helper
functions by putting it in the args list. In general, the second argument to each function is a list of the “real
arguments” in our object-oriented thinking.

By using the get, set, and send functions we defined, making and using points “feels” just like OOP:

(define p1 (make-point 4 0))

(send p1 ’get-x) ; 4

(send p1 ’get-y) ; 0

(send p1 ’distToOrigin) ; 4

(send p1 ’set-y 3)

(send p1 ’distToOrigin) ; 5

Now let’s simulate subclassing...

Our encoding of objects does not use classes, but we can still create something that reuses the code used to
define points. Here is code to create points with a color field and getter/setter methods for this field. The
key idea is to have the constructor create a point object with make-point and then extend this object by
creating a new object that has the extra field and methods:

(define (make-color-point _x _y _c)

(let ([pt (make-point _x _y)])

(obj

(cons (mcons ’color _c)

(obj-fields pt))

(append (list

(cons ’get-color (lambda (self args) (get self ’color)))

(cons ’set-color (lambda (self args) (set self ’color (car args)))))

(obj-methods pt)))))

We can use “objects” returned from make-color-point just like we use “objects” returned from make-point,
plus we can use the field color and the methods get-color and set-color.

The essential distinguishing feature of OOP is dynamic dispatch. Our encoding of objects “gets dynamic
dispatch right” but our examples do not yet demonstrate it. To do so, we need a “method” in a “superclass”
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to call a method that is defined/overridden by a “subclass.” As we did in Ruby, let’s define polar points
by adding new fields and overriding the get-x, get-y, set-x, and set-y methods. A few details about the
code below:

• As with color-points, our “constructor” uses the “superclass” constructor.

• As would happen in Java, our polar-point objects still have x and y fields, but we never use them.

• For simplicity, we just override methods by putting the replacements earlier in the method list than
the overridden methods. This works because assoc returns the first matching pair in the list.

Most importantly, the distToOrigin “method” still works for a polar point because the method calls in its
body will use the procedures listed with ’get-x and ’get-y in the definition of make-polar-point just like
dynamic dispatch requires. The correct behavior results from our send function passing the whole object as
the first argument.

(define (make-polar-point _r _th)

(let ([pt (make-point #f #f)])

(obj

(append (list (mcons ’r _r)

(mcons ’theta _th))

(obj-fields pt))

(append

(list

(cons ’set-r-theta

(lambda (self args)

(begin

(set self ’r (car args))

(set self ’theta (cadr args)))))

(cons ’get-x (lambda (self args)

(let ([r (get self ’r)]

[theta (get self ’theta)])

(* r (cos theta)))))

(cons ’get-y (lambda (self args)

(let ([r (get self ’r)]

[theta (get self ’theta)])

(* r (sin theta)))))

(cons ’set-x (lambda (self args)

(let* ([a (car args)]

[b (send self ’get-y)]

[theta (atan (/ b a))]

[r (sqrt (+ (* a a) (* b b)))])

(send self ’set-r-theta r theta))))

(cons ’set-y (lambda (self args)

(let* ([b (car args)]

[a (send self ’get-x)]

[theta (atan (/ b a))]

[r (sqrt (+ (* a a) (* b b)))])

(send self ’set-r-theta r theta)))))

(obj-methods pt)))))

We can create a polar-point object and send it some messages like this:
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(define p3 (make-polar-point 4 3.1415926535))

(send p3 ’get-x) ; 4

(send p3 ’get-y) ; 0 (or a slight rounding error)

(send p3 ’distToOrigin) ; 4 (or a slight rounding error)

(send p3 ’set-y 3)

(send p3 ’distToOrigin) ; 5 (or a slight rounding error)
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