
CSE 341, Autumn 2017, Assignment 7
Due: Friday December 8, 11:00PM

Set-up:

For this assignment, you will complete and extend two implementations of an interpreter for a small “lan-
guage” for two-dimensional geometry objects. An implementation in SML is mostly completed for you. An
implementation in Ruby is mostly not completed. The SML implementation is structured with functions
and pattern-matching. The Ruby implemented is structured with subclasses and methods, including some
mind-bending double dispatch and other dynamic dispatch to stick with an OOP style even where your
instructor thinks the functional style is easier to understand.

Download and edit hw7.sml and hw7.rb from the course website. Some example tests are also provided.

Language Semantics:

Our “language” has five kinds of values and four other kinds of expressions. The representation of expressions
depends on the metalanguage (SML or Ruby), with this same semantics:

• A NoPoints represents the empty set of two-dimensional points.

• A Point represents a two-dimensional point with an x-coordinate and a y-coordinate. Both coordinates
are floating-point numbers.

• A Line is a non-vertical infinite line in the plane, represented by a slope and an intercept (as in
y = mx + b where m is the slope and b is the intercept), both floating-point numbers.

• A VerticalLine is an infinite vertical line in the plane, represented by its x-coordinate.

• A LineSegment is a (finite) line segment, represented by the x- and y-coordinates of its endpoints (so
four total floating-point numbers).

• An Intersect expression is not a value. It has two subexpressions. The semantics is to evaluate the
subexpressions (in the same environment) and then return the value that is the intersection (in the
geometric sense) of the two subresults. For example, the intersection of two lines could be one of:

– NoPoints, if the lines are parallel

– a Point, if the lines intersect

– a Line, if the lines have the same slope and intercept (see the note below about what “the same”
means for floating-point numbers)

• A Let expression is not a value. It is like let-expressions in other languages we have studied: The first
subexpression is evaluated and the result bound to a variable that is added to the environment for
evaluating the second subexpression.

• A Var expression is not a value. It is for using variables in the environment: We look up a string in
the environment to get a geometric value.

• A Shift expression is not a value. It has a deltaX (a floating-point number), a deltaY (a floating-point
number), and a subexpression. The semantics is to evaluate the subexpression and then shift the result
by deltaX (in the x-direction; positive is “to the right”) and deltaY (in the y-direction; positive is
“up”). More specifically, shifting for each form of value is as follows:

– NoPoints remains NoPoints.

– A Point representing (x, y) becomes a Point representing (x + deltaX , y + deltaY ).

– A Line with slope m and intercept b becomes a Line with slope m and an intercept of
b + deltaY −m · deltaX .

– A VerticalLine becomes a VerticalLine shifted by deltaX ; the deltaY is irrelevant.

– A LineSegment has its endpoints shift by deltaX and deltaY .

1



Note on Floating-Point Numbers:

Because arithmetic with floating-point numbers can introduce small rounding errors, it is rarely appropriate
to use equality to decide if two floating-point numbers are “the same.” Instead, the provided code uses a
helper function/method to decide if two floating-point numbers are “real close” (for our purposes, within
.00001) and all your code should follow this approach as needed. For example, two points are the same if
their x-coordinates are within .00001 and their y-coordinates are within .00001.

Expression Preprocessing:

To simplify the interpreter, we first preprocess expressions. Preprocessing takes an expression and produces
a new, equivalent expression with the following invariants:

• No LineSegment anywhere in the expression has endpoints that are the same as (i.e., real close to)
each other. Such a line-segment should be replaced with the appropriate Point. For example in ML
syntax, LineSegment(3.2,4.1,3.2,4.1) should be replaced with Point(3.2,4.1).

• Every LineSegment has its first endpoint (the first two real values in SML) to the right (higher x-value)
of the second endpoint. If the x-coordinates of the two endpoints are the same (real close), then the
LineSegment has its first endpoint above (higher y-value) the second endpoint. For any LineSegment

not meeting this requirement, replace it with a LineSegment with the same endpoints reordered.
(Admittedly this order can seem “backwards” especially when reading the SML code but sometimes
reading code involves accepting a convention decided by someone else. Maintain this convention in
both the SML and the Ruby code.)

The SML Code:

Most of the SML solution is given to you. All you have to do is add preprocessing (problem 1) and Shift

expressions (problem 2). The sample solution added much less than 50 lines of code. As always, line counts
are just a rough guide.

Notice the SML code is organized around a datatype-definition for expressions, functions for the different
operations, and pattern-matching to identify different cases. The interpreter eval prog uses a helper function
intersect with cases for every combination of geometric value (so with 5 kinds of values there are 25 cases
though some are handled together via pattern-matching). The surprisingly complicated part is the algorithm
for intersecting two line segments.

The Ruby Code:

Much of the Ruby solution is not given to you. To get you started in the desired way, we have defined classes
for each kind of expression in our language, as well as appropriate superclasses. We have implemented parts
of each class and left comments with what you need to do to complete the implementation as described in
more detail in problems 3 and 4. The sample solution added about 200 lines of Ruby code, many of which
were end. As always, line counts are just a rough guide.

Notice the Ruby code is organized around classes where each class has methods for various operations. All
kinds of expressions need methods for preprocessing and evaluation. They are subclasses of GeometryExpression
just like all ML constructors are part of the geom_exp datatype (though the GeometryExpression class turns
out not to be so useful). The value subclasses also need methods for shifting and intersection and they sub-
class GeometryValue so that some shared methods can be inherited (in analogy with some uses of wildcard
patterns and helper functions in ML).

Your Ruby code should follow these general guidelines:

• All your geometry-expression objects should be immutable: assign to instance variables only when
constructing an object. To “change” a field, create a new object.

• The geometry-expression objects have public getter methods: like in the SML code, the entire program
can assume the expressions have various coordinates, subexpressions, etc.

2



• Unlike in SML, you do not need to define exceptions since without a type-checker we can just “assume”
the right objects are used in the right places. You can also use raise with just a string as appropriate.

• Follow OOP-style. In particular, operations should be instance methods and you should not use
methods like is_a?, instance_of?, class, etc. This makes problem 4 much more difficult, which
is the purpose of the problem.

Advice for Approaching the Assignment:

• Understand the high-level structure of the code and how the SML and Ruby files are structured in
different ways before diving into the details.

• Approach the questions in order even though there is some flexibility (e.g., it is possible
to do the Ruby problems before the SML problems).

• Because almost all the SML code is given to you, for much of the Ruby implementation, you can port
the corresponding part of the SML solution. Doing so makes your job much easier (e.g., you need not
re-figure out facts about geometry). Porting existing code to a new language is a useful and realistic
skill to develop. It also helps teach the similarities and differences between languages.

• Be sure to test each line of your Ruby code. Dynamically typed languages require testing things that
other languages catch for you statically. Ruby will not even tell you statically if you misspell a method
name or instance variable.

The Problems (Finally):

1. Implement an SML function preprocess_prog of type geom_exp -> geom_exp to implement expres-
sion preprocessing as defined above. The idea is that evaluating program e would be done with
eval_prog (preprocess_prog e, []) where the [] is the empty list for the empty environment.

2. Add shift expressions as defined above to the SML implementation by adding the constructor
Shift of real * real * geom_exp to the definition of geom_exp and adding appropriate branches
to eval_prog and preprocess_prog. (The first real is deltaX and the second is deltaY .) Do not
change other functions. In particular, there is no need to change intersect because this function is
used only for values in our geometry language and shift expressions are not geometry values.

3. Complete the Ruby implementation except for intersection, which means skip for now additions to
the Intersect class and, more importantly, methods related to intersection in other classes. Do not
modify the code given to you. Follow this approach:

• Every subclass of GeometryExpression should have a preprocess_prog method that takes no
arguments and returns the geometry object that is the result of preprocessing self. To avoid
mutation, return a new instance of the same class unless it is trivial to determine that self is
already an appropriate result.

• Every subclass of GeometryExpression should have an eval_prog method that takes one argu-
ment, the environment, which you should represent as an array whose elements are two-element
arrays: a Ruby string (the variable name) in index 0 and an object that is a value in our language
in index 1. As in any interpreter, pass the appropriate environment when evaluating subexpres-
sions. (This is fairly easy since we do not have closures.) To make sure you handle both scope
and shadowing correctly:

– Do not ever mutate an environment; create a new environment as needed instead. Be careful
what methods you use on arrays to avoid mutation.

– The eval_prog method in Var is given to you. Make sure the environments you create work
correctly with this definition.

3



The result of eval_prog is the result of “evaluating the expression represented by self,” so, as
we expect with OOP style, the cases of ML’s eval_prog are spread among our classes, just like
with preprocess_prog.

• Every subclass of GeometryValue should have a shift method that takes two arguments dx and
dy and returns the result of shifting self by dx and dy. In other words, all values in the language
“know how to shift themselves to create new objects.” Hence the eval_prog method in the Shift
class should be very short.

• Remember you should not use any method like is_a?, instance_of?, class, etc.

• Analogous to SML, an overall program e would be evaluated via e.preprocess_prog.eval_prog []

(notice we use an array for the environment).

4. Implement intersection in your Ruby solution following the directions here, in which we require both
double dispatch and a separate use of dynamic dispatch for the line-segment case. Remember all the
different cases in ML will appear somewhere in the Ruby solution, just arranged very differently.

• Implement preprocess_prog and eval_prog in the Intersect class. This is not difficult,
much like your prior work in the Shift class is not difficult. This is because every subclass
of GeometryValue will have an intersect method that “knows how to intersect itself” with
another geometry-value passed as an argument.

• Every subclass of GeometryValue needs an intersect method, but these will be short. The
argument is another geometry-value, but we do not know what kind. So we use double dispatch
and call the appropriate method on the argument passing self to the method. For example, the
Point class has an intersect method that calls intersectPoint with self.

• So methods intersectNoPoints, intersectPoint, intersectLine, intersectVerticalLine,
and intersectLineSegment defined in each of our 5 subclasses of GeometryValue handle the 25
possible intersection combinations:

– The 9 cases involving NoPoints are done for you. See the GeometryValue class — there is
nothing more you need to do.

– Next do the 9 remaining cases involving combinations that do not involve LineSegment. You
will need to understand double-dispatch to avoid is_a? and instance_of?. As in the ML
code, 3 of these 9 cases can just use one of the other cases because intersection is commutative.

– What remains are the 7 cases where one value is a LineSegment and the other is not
NoPoints. These cases are all “done” for you because all subclasses of GeometryValue in-
herit an intersectLineSegment method that will be correct for all of them. But it calls
intersectWithSegmentAsLineResult, which you need to implement for each subclass of
GeometryValue. Here is how this method should work:

∗ It takes one argument, which is a line segment. (In ML the corresponding variable was a
real*real*real*real, but here it will actually be an instance of LineSegment and you
can use the getter methods x1, y1, x2, and y2 as needed.)

∗ It assumes that self is the intersection of (1) some not-provided geometry-value and (2)
the line (vertical or not) containing the segment given as an argument.

∗ It returns the intersection of the not-provided geometry-value and the segment given as
an argument.

Together the 5 intersectWithSegmentAsLineResult methods you write will implement the
same algorithm as on lines 110–169 of the ML code.

5. Challenge Problem: Make a third version of your solution in Java. Follow the structure of your
Ruby solution, with no use of Java’s instanceof or type casts. Use abstract methods as necessary for
type-checking.

4



Turn-in Instructions: Turn in four files using the web-form linked to from the course website:

• The SML and Ruby files with your solutions

• SML and Ruby files used for testing

• If you do the challenge problem, turn in your Java files as well.

5


