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Type-checking

• (Static) type-checking can reject a program before it runs to 
prevent the possibility of some errors
– A feature of statically typed languages

• Dynamically typed languages do little (none?) such checking
– So might try to treat a number as a function at run-time

• Will study relative advantages after some Racket
– Racket, Ruby (and Python, Javascript, …) dynamically typed

• ML (and Java, C#, Scala, C, C++) is statically typed
– Every binding has one type, determined “at compile-time”
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Implicitly typed
• ML is statically typed
• ML is implicitly typed: rarely need to write down types

• Statically typed:  Much more like Java than Javascript!
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fun f x = (* infer val f : int -> int *)
if x > 3
then 42 
else x * 2

fun g x = (* report type error *)
if x > 3
then true 
else x * 2



Type inference

• Type inference problem: Give every binding/expression a type 
such that type-checking succeeds
– Fail if and only if no solution exists

• In principle, could be a pass before the type-checker
– But often implemented together

• Type inference can be easy, difficult, or impossible
– Easy: Accept all programs
– Easy: Reject all programs
– Subtle, elegant, and not magic: ML
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Overview

• Will describe ML type inference via several examples
– General algorithm is a slightly more advanced topic
– Supporting nested functions also a bit more advanced

• Enough to help you “do type inference in your head” 
– And appreciate it is not magic
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Key steps

• Determine types of bindings in order 
– (Except for mutual recursion)
– So you cannot use later bindings: will not type-check

• For each val or fun binding:
– Analyze definition for all necessary facts (constraints)
– Example: If see x > 0, then x must have type int
– Type error if no way for all facts to hold (over-constrained)

• Afterward, use type variables (e.g., 'a) for any unconstrained types
– Example: An unused argument can have any type

• (Finally, enforce the value restriction, discussed later)

Autumn 2017 6CSE341: Programming Languages



Very simple example

After this example, will go much more step-by-step
– Like the automated algorithm does
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val x = 42 (* val x : int *)

fun f (y, z, w) =
if y (* y must be bool *)
then z + x (* z must be int *)
else 0 (* both branches have same type *)

(* f must return an int
f must take a bool * int * ANYTHING
so val f : bool * int * 'a -> int

*)



Relation to Polymorphism

• Central feature of ML type inference: it can infer types with type 
variables
– Great for code reuse and understanding functions

• But remember there are two orthogonal concepts
– Languages can have type inference without type variables
– Languages can have type variables without type inference
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Key Idea

• Collect all the facts needed for type-checking

• These facts constrain the type of the function

• See code and/or reading notes for:
– Two examples without type variables
– And one example that does not type-check
– Then examples for polymorphic functions

• Nothing changes, just under-constrained: some types 
can “be anything” but may still need to be the same as 
other types
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Material after here is optional,
but is an important part of the full story
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Two more topics

• ML type-inference story so far is too lenient
– Value restriction limits where polymorphic types can occur
– See why and then what

• ML is in a “sweet spot”
– Type inference more difficult without polymorphism
– Type inference more difficult with subtyping

Important to “finish the story” but these topics are:
– A bit more advanced 
– A bit less elegant
– Will not be on the exam
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The Problem

As presented so far, the ML type system is unsound!
– Allows putting a value of type t1 (e.g., int) where we 

expect a value of type t2 (e.g., string)

A combination of polymorphism and mutation is to blame:

• Assignment type-checks because (infix) := has type                
'a ref * 'a -> unit, so instantiate with string

• Dereference type-checks because ! has type                            
'a ref -> 'a, so instantiate with int
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val r = ref NONE (* val r : 'a option ref *)

val _ = r := SOME "hi" 

val i = 1 + valOf (!r)



What to do

To restore soundness, need a stricter type system that rejects at 
least one of these three lines

• And cannot make special rules for reference types because 
type-checker cannot know the definition of all type synonyms
– Due to module system
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val r = ref NONE (* val r : 'a option ref *)

val _ = r := SOME "hi" 

val i = 1 + valOf (!r)

type 'a foo = 'a ref
val f = ref (* val f : 'a -> 'a foo *)
val r = f NONE



The fix

• Value restriction: a variable-binding can have a polymorphic 
type only if the expression is a variable or value
– Function calls like ref NONE are neither

• Else get a warning and unconstrained types are filled in with 
dummy types (basically unusable)

• Not obvious this suffices to make type system sound, but it does
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val r = ref NONE (* val r : ?.X1 option ref *)

val _ = r := SOME "hi" 

val i = 1 + valOf (!r)



The downside

As we saw previously, the value restriction can cause problems 
when it is unnecessary because we are not using mutation

The type-checker does not know List.map is not making a 
mutable reference

Saw workarounds in previous segment on partial application
– Common one: wrap in a function binding
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val pairWithOne = List.map (fn x => (x,1))
(* does not get type 'a list -> ('a*int) list *)

fun pairWithOne xs = List.map (fn x => (x,1)) xs
(* 'a list -> ('a*int) list *)



A local optimum

• Despite the value restriction, ML type inference is elegant and 
fairly easy to understand

• More difficult without polymorpism
– What type should length-of-list have?

• More difficult with subtyping
– Suppose pairs are supertypes of wider tuples
– Then val (y,z) = x constrains x to have at least two 

fields, not exactly two fields
– Depending on details, languages can support this, but types 

often more difficult to infer and understand

– Will study subtyping later, but not with type inference
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