
CSE341: Programming Languages

Lecture 20
Arrays and Such,
Blocks and Procs,

Inheritance and Overriding

Dan Grossman
Autumn 2017

This lecture

Three mostly separate topics

• Flexible arrays, ranges, and hashes [actually covered in section]

• Ruby’s approach to almost-closures (blocks) and closures (Procs)
– [partially discussed in section as well]
– Convenient to use; unusual approach
– Used throughout large standard library

• Explicit loops rare
• Instead of a loop, go find a useful iterator

• Subclasses, inheritance, and overriding
– The essence of OOP, now in a more dynamic language

Autumn 2017 2CSE341: Programming Languages

Ruby Arrays

• Lots of special syntax and many provided methods for the
Array class

• Can hold any number of other objects, indexed by number
– Get via a[i]
– Set via a[i] = e

• Compared to arrays in many other languages
– More flexible and dynamic
– Fewer operations are errors
– Less efficient

• “The standard collection” (like lists were in ML and Racket)

Autumn 2017 3CSE341: Programming Languages

Using Arrays

• See many examples, some demonstrated here

• Consult the documentation/tutorials
– If seems sensible and general, probably a method for it

• Arrays make good tuples, lists, stacks, queues, sets, …

• Iterating over arrays typically done with methods taking blocks
– Next topic…

Autumn 2017 4CSE341: Programming Languages

Blocks

Blocks are probably Ruby's strangest feature compared to other PLs

But almost just closures

– Normal: easy way to pass anonymous functions to methods for
all the usual reasons

– Normal: Blocks can take 0 or more arguments

– Normal: Blocks use lexical scope: block body uses
environment where block was defined

Examples:

Autumn 2017 5CSE341: Programming Languages

3.times { puts "hi" }
[4,6,8].each { puts "hi" }
i = 7
[4,6,8].each {|x| if i > x then puts (x+1) end }

Some strange things

• Can pass 0 or 1 block with any message
– Callee might ignore it
– Callee might give an error if you do not send one
– Callee might do different things if you do/don’t send one

• Also number-of-block-arguments can matter

• Just put the block “next to” the “other” arguments (if any)
– Syntax: {e}, {|x| e}, {|x,y| e}, etc. (plus variations)

• Can also replace { and } with do and end
– Often preferred for blocks > 1 line

Autumn 2017 6CSE341: Programming Languages

Blocks everywhere

• Rampant use of great block-taking methods in standard libraray
• Ruby has loops but very rarely used

– Can write (0..i).each {|j| e}, but often better options
• Examples (consult documentation for many more)

Autumn 2017 7CSE341: Programming Languages

a = Array.new(5) {|i| 4*(i+1)}
a.each { puts "hi" }
a.each {|x| puts (x * 2) }
a.map {|x| x * 2 } #synonym: collect
a.any? {|x| x > 7 }
a.all? {|x| x > 7 }
a.inject(0) {|acc,elt| acc+elt }
a.select {|x| x > 7 } #non-synonym: filter

More strangeness

• Callee does not give a name to the (potential) block argument

• Instead, just calls it with yield or yield(args)
– Silly example:

– See code for slightly less silly example

• Can ask block_given? but often just assume a block is given
or that a block's presence is implied by other arguments

Autumn 2017 8CSE341: Programming Languages

def silly a
(yield a) + (yield 42)

end

x.silly 5 { |b| b*2 }

Blocks are “second-class”

All a method can do with a block is yield to it
– Cannot return it, store it in an object (e.g., for a callback), …
– But can also turn blocks into real closures
– Closures are instances of class Proc

• Called with method call

This is Ruby, so there are several ways to make Proc objects
– One way: method lambda of Object takes a block and

returns the corresponding Proc

Autumn 2017 9CSE341: Programming Languages

Example

• Blocks are fine for applying to array elements

• But for an array of closures, need Proc objects
– More common use is callbacks

Autumn 2017 10CSE341: Programming Languages

b = a.map {|x| x+1 }
i = b.count {|x| x>=6 }

a = [3,5,7,9]

c = a.map {|x| lambda {|y| x>=y}}
c[2].call 17
j = c.count {|x| x.call(5) }

Moral

• First-class (“can be passed/stored anywhere”) makes closures
more powerful than blocks

• But blocks are (a little) more convenient and cover most uses

• This helps us understand what first-class means

• Language design question: When is convenience worth making
something less general and powerful?

Autumn 2017 11CSE341: Programming Languages

More collections

• Hashes like arrays but:
– Keys can be anything; strings and symbols common
– No natural ordering like numeric indices
– Different syntax to make them
Like a dynamic record with anything for field names
– Often pass a hash rather than many arguments

• Ranges like arrays of contiguous numbers but:
– More efficiently represented, so large ranges fine

Good style to:
– Use ranges when you can
– Use hashes when non-numeric keys better represent data

Autumn 2017 12CSE341: Programming Languages

Similar methods

• Arrays, hashes, and ranges all have some methods other don’t
– E.g., keys and values

• But also have many of the same methods, particularly iterators
– Great for duck typing
– Example

Once again separating “how to iterate” from “what to do”

Autumn 2017 13CSE341: Programming Languages

def foo a
a.count {|x| x*x < 50}

end

foo [3,5,7,9]
foo (3..9)

Next major topic

• Subclasses, inheritance, and overriding
– The essence of OOP
– Not unlike you have seen in Java, but worth studying from PL

perspective and in a more dynamic language

Autumn 2017 14CSE341: Programming Languages

Subclassing

• A class definition has a superclass (Object if not specified)

• The superclass affects the class definition:
– Class inherits all method definitions from superclass
– But class can override method definitions as desired

• Unlike Java/C#/C++:
– No such thing as “inheriting fields” since all objects create

instance variables by assigning to them
– Subclassing has nothing to do with a (non-existent) type

system: can still (try to) call any method on any object

Autumn 2017 15CSE341: Programming Languages

class ColorPoint < Point …

Example (to be continued)

Autumn 2017 16CSE341: Programming Languages

class Point
attr_accessor :x, :y
def initialize(x,y)

@x = x
@y = y

end
def distFromOrigin

direct field access
Math.sqrt(@x*@x

+ @y*@y)
end
def distFromOrigin2

use getters
Math.sqrt(x*x

+ y*y)
end

end

class ColorPoint < Point
attr_accessor :color
def initialize(x,y,c)

super(x,y)
@color = c

end
end

An object has a class

• Using these methods is usually non-OOP style
– Disallows other things that “act like a duck”
– Nonetheless semantics is that an instance of ColorPoint

“is a” Point but is not an “instance of” Point
– [Java note: instanceof is like Ruby's is_a?]

Autumn 2017 17CSE341: Programming Languages

p = Point.new(0,0)
cp = ColorPoint.new(0,0,"red")
p.class # Point
p.class.superclass # Object
cp.class # ColorPoint
cp.class.superclass # Point
cp.class.superclass.superclass # Object
cp.is_a? Point # true
cp.instance_of? Point # false
cp.is_a? ColorPoint # true
cp.instance_of? ColorPoint # true

Example continued

• Consider alternatives to:

• Here subclassing is a good choice, but programmers often
overuse subclassing in OOP languages

Autumn 2017 18CSE341: Programming Languages

class ColorPoint < Point
attr_accessor :color
def initialize(x,y,c)

super(x,y)
@color = c

end
end

Why subclass

• Instead of creating ColorPoint, could add methods to Point
– That could mess up other users and subclassers of Point

Autumn 2017 19CSE341: Programming Languages

class Point
attr_accessor :color
def initialize(x,y,c="clear")

@x = x
@y = y
@color = c

end
end

Why subclass
• Instead of subclassing Point, could copy/paste the methods

– Means the same thing if you don't use methods like is_a?
and superclass, but of course code reuse is nice

Autumn 2017 20CSE341: Programming Languages

class ColorPoint
attr_accessor :x, :y, :color
def initialize(x,y,c="clear")

…
end
def distFromOrigin

Math.sqrt(@x*@x + @y*@y)
end
def distFromOrigin2

Math.sqrt(x*x + y*y)
end

end

Why subclass
• Instead of subclassing Point, could use a Point instance variable

– Define methods to send same message to the Point
– Often OOP programmers overuse subclassing
– But for ColorPoint, subclassing makes sense: less work and

can use a ColorPoint wherever code expects a Point

Autumn 2017 21CSE341: Programming Languages

class ColorPoint
attr_accessor :color
def initialize(x,y,c="clear")

@pt = Point.new(x,y)
@color = c

end
def x

@pt.x
end
… # similar “forwarding” methods

for y, x=, y=
end

Overriding
• ThreeDPoint is more interesting than ColorPoint because it

overrides distFromOrigin and distFromOrigin2
– Gets code reuse, but highly disputable if it is appropriate to

say a ThreeDPoint “is a” Point
– Still just avoiding copy/paste

Autumn 2017 22CSE341: Programming Languages

class ThreeDPoint < Point
…
def initialize(x,y,z)

super(x,y)
@z = z

end
def distFromOrigin # distFromOrigin2 similar

d = super
Math.sqrt(d*d + @z*@z)

end
…

end

So far…

• With examples so far, objects are not so different from closures
– Multiple methods rather than just “call me”
– Explicit instance variables rather than environment where

function is defined
– Inheritance avoids helper functions or code copying
– “Simple” overriding just replaces methods

• But there is one big difference:

Overriding can make a method defined in the superclass
call a method in the subclass

– The essential difference of OOP, studied carefully next lecture

Autumn 2017 23CSE341: Programming Languages

Example: Equivalent except constructor

Autumn 2017 24CSE341: Programming Languages

class PolarPoint < Point
def initialize(r,theta)

@r = r
@theta = theta

end
def x

@r * Math.cos(@theta)
end
def y

@r * Math.sin(@theta)
end
def distFromOrigin

@r
end
…

end

• Also need to define x= and y=
(see code file)

• Key punchline:
distFromOrigin2, defined
in Point, “already works”

– Why: calls to self are
resolved in terms of the
object's class

def distFromOrigin2
Math.sqrt(x*x+y*y)

end

	CSE341: Programming Languages��Lecture 20�Arrays and Such,�Blocks and Procs, �Inheritance and Overriding
	This lecture
	Ruby Arrays
	Using Arrays
	Blocks
	Some strange things
	Blocks everywhere
	More strangeness
	Blocks are “second-class”
	Example
	Moral
	More collections
	Similar methods
	Next major topic
	Subclassing
	Example (to be continued)
	An object has a class
	Example continued
	Why subclass
	Why subclass
	Why subclass
	Overriding
	So far…
	Example: Equivalent except constructor

