
CSE341: Programming Languages

Lecture 2
Functions, Pairs, Lists

Dan Grossman
Autumn 2017

Function definitions

Functions: the most important building block in the whole course
– Like Java methods, have arguments and result
– But no classes, this, return, etc.

Example function binding:

Autumn 2017 2CSE341: Programming Languages

(* Note: correct only if y>=0 *)
fun pow (x : int, y : int) =
if y=0
then 1
else x * pow(x,y-1)

Note: The body includes a (recursive) function call: pow(x,y-1)

Example, extended

Autumn 2017 3CSE341: Programming Languages

fun pow (x : int, y : int) =
if y=0
then 1
else x * pow(x,y-1)

fun cube (x : int) =
pow (x,3)

val sixtyfour = cube 4
val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2

Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
– Example: int * int -> int
– In expressions, * is multiplication: x * pow(x,y-1)

• Cannot refer to later function bindings
– That’s simply ML’s rule
– Helper functions must come before their uses
– Need special construct for mutual recursion (later)

Autumn 2017 4CSE341: Programming Languages

Recursion

• If you’re not yet comfortable with recursion, you will be soon
– Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler”
problems

• Recursion more powerful than loops
– We won’t use a single loop in ML
– Loops often (not always) obscure simple, elegant solutions

Autumn 2017 5CSE341: Programming Languages

Function bindings: 3 questions

• Syntax:
– (Will generalize in later lecture)

• Evaluation: A function is a value! (No evaluation yet)
– Adds x0 to environment so later expressions can call it
– (Function-call semantics will also allow recursion)

• Type-checking:
– Adds binding x0 : (t1 * … * tn) -> t if:
– Can type-check body e to have type t in the static environment

containing:
• “Enclosing” static environment (earlier bindings)
• x1 : t1, …, xn : tn (arguments with their types)
• x0 : (t1 * … * tn) -> t (for recursion)

Autumn 2017 6CSE341: Programming Languages

fun x0 (x1 : t1, … , xn : tn) = e

More on type-checking

• New kind of type: (t1 * … * tn) -> t
– Result type on right
– The overall type-checking result is to give x0 this type in rest

of program (unlike Java, not for earlier bindings)
– Arguments can be used only in e (unsurprising)

• Because evaluation of a call to x0 will return result of evaluating
e, the return type of x0 is the type of e

• The type-checker “magically” figures out t if such a t exists
– Later lecture: Requires some cleverness due to recursion
– More magic after hw1: Later can omit argument types too

Autumn 2017 7CSE341: Programming Languages

fun x0 (x1 : t1, … , xn : tn) = e

Function Calls

A new kind of expression: 3 questions

Syntax:
– (Will generalize later)
– Parentheses optional if there is exactly one argument

Type-checking:
If:
– e0 has some type (t1 * … * tn) -> t
– e1 has type t1, …, en has type tn
Then:
– e0(e1,…,en) has type t
Example: pow(x,y-1) in previous example has type int

Autumn 2017 8CSE341: Programming Languages

e0 (e1,…,en)

Function-calls continued

Evaluation:

1. (Under current dynamic environment,) evaluate e0 to a
function fun x0 (x1 : t1, … , xn : tn) = e

Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to
values v1, …, vn

3. Result is evaluation of e in an environment extended to map
x1 to v1, …, xn to vn

(“An environment” is actually the environment where the
function was defined, and includes x0 for recursion)

Autumn 2017 9CSE341: Programming Languages

e0(e1,…,en)

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
– Now ways to build up data with multiple parts
– This is essential
– Java examples: classes with fields, arrays

Now:
– Tuples: fixed “number of pieces” that may have different types

Then:
– Lists: any “number of pieces” that all have the same type

Later:
– Other more general ways to create compound data

Autumn 2017 10CSE341: Programming Languages

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

• Syntax:

• Evaluation: Evaluate e1 to v1 and e2 to v2; result is (v1,v2)
– A pair of values is a value

• Type-checking: If e1 has type ta and e2 has type tb, then the
pair expression has type ta * tb
– A new kind of type

Autumn 2017 11CSE341: Programming Languages

(e1,e2)

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

• Syntax: and

• Evaluation: Evaluate e to a pair of values and return first or
second piece
– Example: If e is a variable x, then look up x in environment

• Type-checking: If e has type ta * tb, then #1 e has type ta
and #2 e has type tb

Autumn 2017 12CSE341: Programming Languages

#1 e #2 e

Examples

Functions can take and return pairs

Autumn 2017 13CSE341: Programming Languages

fun swap (pr : int*bool) =
(#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
(#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
(x div y, x mod y)

fun sort_pair (pr : int*int) =
if (#1 pr) < (#2 pr)
then pr
else (#2 pr, #1 pr)

Tuples

Actually, you can have tuples with more than two parts
– A new feature: a generalization of pairs

• (e1,e2,…,en)
• ta * tb * … * tn
• #1 e, #2 e, #3 e, …

Homework 1 uses triples of type int*int*int a lot

Autumn 2017 14CSE341: Programming Languages

Nesting

Pairs and tuples can be nested however you want
– Not a new feature: implied by the syntax and semantics

Autumn 2017 15CSE341: Programming Languages

val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))

(* (int*int)*((int*int)*(int*int)) *)

Lists

• Despite nested tuples, the type of a variable still “commits” to a
particular “amount” of data

In contrast, a list:
– Can have any number of elements
– But all list elements have the same type

Need ways to build lists and access the pieces…

Autumn 2017 16CSE341: Programming Languages

Building Lists

• The empty list is a value:

• In general, a list of values is a value; elements separated by
commas:

• If e1 evaluates to v and e2 evaluates to a list [v1,…,vn],
then e1::e2 evaluates to [v,…,vn]

Autumn 2017 17CSE341: Programming Languages

[]

[v1,v2,…,vn]

e1::e2 (* pronounced "cons" *)

Accessing Lists

Until we learn pattern-matching, we will use three standard-library
functions

• null e evaluates to true if and only if e evaluates to []

• If e evaluates to [v1,v2,…,vn] then hd e evaluates to v1
– (raise exception if e evaluates to [])

• If e evaluates to [v1,v2,…,vn] then tl e evaluates to
[v2,…,vn]
– (raise exception if e evaluates to [])
– Notice result is a list

Autumn 2017 18CSE341: Programming Languages

Type-checking list operations

Lots of new types: For any type t, the type t list describes lists
where all elements have type t

– Examples: int list bool list int list list
(int * int) list (int list * int) list

• So [] can have type t list list for any type
– SML uses type 'a list to indicate this (“quote a” or “alpha”)

• For e1::e2 to type-check, we need a t such that e1 has type t
and e2 has type t list. Then the result type is t list

• null : 'a list -> bool
• hd : 'a list -> 'a
• tl : 'a list -> 'a list

Autumn 2017 19CSE341: Programming Languages

Example list functions

Autumn 2017 20CSE341: Programming Languages

fun sum_list (xs : int list) =
if null xs
then 0
else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
if x=0
then []
else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
if null xs
then ys
else hd (xs) :: append (tl(xs), ys)

Recursion again

Functions over lists are usually recursive
– Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?

– Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be
recursive

– You create a list out of smaller lists

Autumn 2017 21CSE341: Programming Languages

Lists of pairs
Processing lists of pairs requires no new features. Examples:

Autumn 2017 22CSE341: Programming Languages

fun sum_pair_list (xs : (int*int) list) =
if null xs
then 0
else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) =
if null xs
then []
else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =
if null xs
then []
else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =
(sum_list (firsts xs)) + (sum_list (seconds xs))

