
CSE 341
Section 4

Alexander Lent
Autumn 2017

With thanks to Nick Mooney & Spencer Pearson

Today’s Agenda

• Mutual Recursion
• Module System Example

• Namespace Organization
• Preserving Invariants

• Practice with Currying and High Order Functions

2

Mutual Recursion

• What if we need function f to call g, and function g
to call f?

• This is a common idiom

3

fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately this
does not work 

Mutual Recursion Workaround

• We can use higher order functions to get this
working

• It works, but there has got to be a better way!

4

fun earlier f x =
...
f x
...

fun later x =
...
earlier later x
...

Mutual Recursion with and

• SML has a keyword for that
• Works with mutually recursive datatype bindings

too

5

fun earlier x =
...
later x
...

and later x =
...
earlier x
...

Module System

• Good for organizing code, and managing
namespaces (useful, relevant)

• Good for maintaining invariants (interesting)

6

Interesting Examples of Invariants

• Ordering of operations
• e.g. insert, then query

• Data kept in good state
• e.g. fractions in lowest terms

• Policies followed
• e.g. don't allow shipping request without purchase order

7

Currying and High Order Functions

• Some examples:
• List.map
• List.filter
• List.foldl

8

	CSE 341�Section 4
	Today’s Agenda
	Mutual Recursion
	Mutual Recursion Workaround
	Mutual Recursion with and
	Module System
	Interesting Examples of Invariants
	Currying and High Order Functions

