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Today’s Agenda

• Mutual Recursion
• Module System Example

• Namespace Organization
• Preserving Invariants

• Practice with Currying and High Order Functions
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Mutual Recursion

• What if we need function f to call g, and function g 
to call f?

• This is a common idiom
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fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately this 
does not work 



Mutual Recursion Workaround

• We can use higher order functions to get this 
working

• It works, but there has got to be a better way!
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fun earlier f x =
...
f x
...

fun later x =
...
earlier later x
...



Mutual Recursion with and

• SML has a keyword for that
• Works with mutually recursive datatype bindings  

too
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fun earlier x =
...
later x
...

and later x =
...
earlier x
...



Module System

• Good for organizing code, and managing 
namespaces (useful, relevant)

• Good for maintaining invariants (interesting)
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Interesting Examples of Invariants

• Ordering of operations
• e.g. insert, then query

• Data kept in good state
• e.g. fractions in lowest terms

• Policies followed
• e.g. don't allow shipping request without purchase order
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Currying and High Order Functions

• Some examples:
• List.map
• List.filter
• List.foldl
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