
CSE 341: Programming Languages

Section 1

Spencer Pearson
(Thu 9:30-10:30, CSE 220)

Thanks to Dan Grossman, Konstantin Weitz, Josiah Adams, and Cody A. Schroeder for the majority of this content

Today’s Agenda

• ML Development Workflow
– The REPL (Read–Eval–Print Loop)
– Emacs
– Using use

• More ML
– Shadowing Variables
– Debugging
–Comparison Operations

– Boolean Operations
– Testing

2

The REPL

• Read-Eval-Print-Loop is well named

• Useful for quickly trying things out

(but save code for reuse by putting it in a .sml file)

• Expects semicolons

• (P.S.: rlwrap might be useful.)

3

Emacs Demo

• Recommended (not required) editor for this course

• Powerful, but the learning curve can at first be intimidating

4

Using use

• Enters bindings from the file foo.sml
– Like typing the variable bindings one at a time in sequential

order into the REPL (more on this in a moment)

• Result is () bound to variable it

– Ignorable

• It’s dangerous to reuse use without restarting the REPL

session! Definitions linger.

5

use "foo.sml";

Debugging Errors

Your mistake could be:
• Syntax: What you wrote means nothing or not the construct you

intended
• Type-checking: What you wrote does not type-check
• Evaluation: It runs but produces wrong answer, or an exception,

or an infinite loop

Work on developing resilience to mistakes:

–Slow down
–Don’t panic
–Read what you wrote very carefully
–Preventative medicine: testing!

6

Shadowing of Variable Bindings
val a = 1; (* a -> 1 *)
val b = a; (* a -> 1, b -> 1 *)
val a = 2; (* a -> 2, b -> 1 *)

7

1. Expressions in variable bindings are evaluated “eagerly”
– Before the variable binding “finishes”
– Afterwards, the expression producing the value is irrelevant

1. Multiple variable bindings to the same variable name, or

“shadowing”, is allowed but discouraged
– When looking up a variable, ML uses the latest binding by that

name in the current environment

1. Remember, there is no way to “assign to” a variable in ML

– Can only shadow it in a later environment
– After binding, a variable’s value is an immutable constant

Try to Avoid Shadowing

8

• Shadowing can be confusing and is often poor style

• Why? Reintroducing variable bindings in the same REPL session

may..
– make it seem like wrong code is correct; or
– make it seem like correct code is wrong.

val x = "Hello World";
val x = 2; (* is this a type error? *)
val res = x * 2; (* is this 4 or a type error? *)

Using a Shadowed Variable

• Is it ever possible to use a shadowed variable? Yes! And no…
• It can be possible to uncover a shadowed variable when the

latest binding goes out of scope

9

val threshold = 10;
(* threshold -> 10 *)
fun is_big(x : int) = x > threshold;
(* threshold -> 10, is_big -> (function) *)
val threshold = 20;
(* threshold -> 20, is_big -> (function) *)
val z = is_big 15;

Use use Wisely

• Warning: Variable shadowing makes it dangerous to call use
more than once without restarting the REPL session.

• It may be fine to repeatedly call use in the same REPL

session, but unless you know what you’re doing, be safe!
– Ex: loading multiple distinct files (with independent variable

bindings) at the beginning of a session
– use’s behavior is well-defined, but even expert

programmers can get confused

• Restart your REPL session before repeated calls to use

10

Comparisons

For comparing int values:
= <> > < >= <=

You might see weird error messages because comparators can be
used with some other types too:

• > < >= <= can be used with real, but not 1 int and 1 real

• = <> can be used with any “equality type” but not with real

– Let’s not discuss equality types yet

11

Boolean Operations

• not is just a pre-defined function, but andalso and orelse must
be built-in operations since they cannot be implemented as a
function in ML.
– Why?

• Be careful to always use andalso instead of and.
• and is different. We will get back to it later.

12

Operation Syntax Type-checking Evaluation

andalso e1 andalso e2 e1 and e2 must have type
bool

Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 must have type
bool

Same as Java’s
e1 || e2

not not e1 e1 must have type bool Same as Java’s
!e1

andalso and orelse “short-circuit” their evaluation and
may not evaluate both e1 and e2.

Testing

Write tests for your code!

val test1 = (abs 2 = 2);
val test2 = (abs 0 = 0);

