
CSE 341
Section 3

Nick Mooney
Spring 2017

1. SML Docs
• Standard Basis

2. First-Class Functions
• Anonymous
• Some style tips
• Higher-Order

3. Examples

Agenda

Standard Basis Documentation
Online Documentation
http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset
Top-Level http://www.standardml.org/Basis/top-level-chapter.html
List http://www.standardml.org/Basis/list.html
ListPair http://www.standardml.org/Basis/list-pair.html
Real http://www.standardml.org/Basis/real.html
String http://www.standardml.org/Basis/string.html

Anonymous Functions
An Anonymous Function
fn pattern => expression
• An expression that creates a new function with no name.
• Usually used as an argument to a higher-order function.
• Almost equivalent to the following:
let fun name pattern = expression in name end
• The difference is that anonymous functions cannot be recursive!!!

Anonymous Functions
What's the difference between the following two bindings?
 val name = fn pattern => expression;
 fun name pattern = expression;

• Once again, the difference is recursion.
• However, excluding recursion, a fun binding could just be syntactic sugar for a

val binding and an anonymous function.
• This is because there are no recursive val bindings in SML.

Unnecessary Function Wrapping
What's the difference between the following two expressions?

(fn xs => tl xs) vs. tl

Let’s look at another example we’re familiar with…

(if ex then true else false) vs. ex

• Other than style, these two expressions result in the exact same thing.
• However, one creates an unnecessary function to wrap tl.
• Style points, blah blah… do it because it’s nice, not for the points

Higher-Order Functions
• A function that returns a function or takes a function as an argument.

Two Canonical Examples
• map : ('a -> 'b) * 'a list -> 'b list

– Applies a function to every element of a list and return a list of the resulting
values.

– Example: map (fn x => x*3, [1,2,3]) === [3,6,9]
• filter : ('a -> bool) * 'a list -> 'a list

– Returns the list of elements from the original list that, when a predicate
function is applied, result in true.

– Example: filter (fn x => x>2, [~5,3,2,5]) === [3,5]

Note: List.map and List.filter are similarly defined in SML but use currying. We'll cover
these later in the course.

Broader Idea
Functions are Awesome!
• SML functions can be passed around like any other value.
• They can be passed as function arguments, returned, and even stored in data

structures or variables.
• Functions like map are very pervasive in functional languages.

– A function like map can even be written for other data structures such as
trees.

