PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE 341: Section 6

Spring 2017
Nick Mooney



Agenda

* Memoization
* Motivation
* A quick detour...
* Better fibonacci

* Streams
* A quick refresher on thunks
* Infinite lists!



Memoization

 Why is the following “natural” implementation of the Fibonacci
sequence slow?

(define (fibonacci x)

(if (or (= x 1) (= x 2))
1
(+ (fibonacci (- x 1))
(fibonacci (- x 2)))))

* Tons of repeated work!
* In fact, execution time grows with respect to 2*



Memoization

Motivation
Remember the results of calls the first time we evaluate them, so we
don’t have to redo any work




A gquick detour...

* An “associative list” is a list of pairs that you can think of as key/value

pairs
(define my-list (list (cons 1 2) (cons 3 4) (cons 5 6) (cons "example" #t)))
(assoc 1 my-list) ; ‘(1 . 2)
(assoc 3 my-list) ; ‘(3 . 4)
(assoc “example” my-list) ; ' ("example” . #t)

* assoc is part of the standard library



How can we improve on Fibonacci?



Memoization Recap

* Take a problem that involves lots of repeated work

* Add the ability to “remember” results
* Maybe using an associative list, maybe some other way

* Now we only do the repeated work once, and we can look it up after
that



Streams

* A stream is basically an infinitely long list, with the added bonus that
it doesn’t take an infinite amount of time to construct
* Good for us
* I'm gonna show you an infinite list
* | want to go home later
* You probably need to eat



A stream is a thunk that, when

evaluated, produces a pai

whose first element is ar

element of the stream, ar

I

d

whose second element is the
stream that will produce the

rest of the elements.



The Simplest Stream

(de

fine

(ones)

(cons 1 ones) )



More complex behavior

* Instead of returning the same function each time, let’s return a new
function, which will produce the next value/function pair, etc...



Some slightly more complex examples



