
CSE 341
Section 7

Tam Dang
Spring 2017

Adapted from slides by Nicholas Shahan and Dan Grossman

Outline

• Interpreting MUPL
• Assume Correct Syntax
• Check for Correct Semantics
• Evaluating the AST

• MUPL “Macros”
• Eval, Quote, and Quasiquote
• Variable Number of Arguments
• Apply

2

Building a MUPL Interpreter

• We are skipping the parsing phase ← Do Not Implement
• Interpreter written in Racket

- Racket is the “metalanguage”

• MUPL code represented as an AST
- AST nodes represented as Racket structs
- Allows us to skip the parsing phase

• Can assume AST has valid syntax
• Can NOT assume AST has valid semantics

3

Correct Syntax Examples

4

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int 34)
(add (int 34) (int 30))
(ifnz (add (int 5) (int 7)) (int 12) (int 1))

…we can interpret these MUPL programs:

Using these Racket structs…

Incorrect Syntax Examples

5

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

…we can assume we won’t see MUPL programs like:

While using these Racket structs…

Illegal input ASTs may crash the interpreter - this is OK

Racket vs. MUPL

6

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Structs in Racket, when defined to take an argument, can
take any Racket value:

But in MUPL, we restrict int to take only an integer value,
add to take two MUPL expressions, and so on…

Illegal input ASTs may crash the interpreter - this is OK

Racket vs. MUPL

7

(struct int (num) #:transparent)
(struct add (e1 e2) #:transparent)
(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)
(int (ifnz (int 0) (int 5) (int 7)))
(add (int 8) #t)
(add 5 4)

Structs in Racket, when defined to take an argument, can
take any Racket value:

So this is valid Racket syntax, but invalid MUPL syntax:

Illegal input ASTs may crash the interpreter - this is OK

Evaluating the AST

• eval-exp should return a MUPL value
• MUPL values all evaluate to themselves
• Otherwise, we haven’t interpreted far enough

8

(int 7) ; evaluates to (int 7)
(add (int 3) (int 4)) ; evaluates to (int 7)

Check for Correct Semantics

What if the program is a legal AST, but evaluation of it tries to
use the wrong kind of value?

• For example, “add an integer and a function”
• You should detect this and give an error message that is not

in terms of the interpreter implementation
• We need to check that the type of a recursive result is what

we expect
• No need to check if any type is acceptable

9

Macros Review

• Extend language syntax (allow new constructs)
• Written in terms of existing syntax
• Expanded before language is actually interpreted or

compiled

10

MUPL “Macros”

• Interpreting MUPL using Racket as the
metalanguage
• MUPL is made up of Racket structs
• In Racket, these are just data types
• Why not write a Racket function that returns MUPL

ASTs?

11

MUPL “Macros”

12

(++ (int 7))

(define (++ exp) (add (int 1) exp))
If our MUPL Macro is a Racket function

Expands to

(add (int 1) (int 7))

Then the MUPL code

quote
• Syntactically, Racket statements can be thought of

as lists of tokens
• (+ 3 4) is a “plus sign”, a “3”, and a “4”
• quote-ing a parenthesized expression produces a

list of tokens

13

quote Examples

14

(+ 3 4) ; 7
(quote (+ 3 4)) ; '(+ 3 4)
(quote (+ 3 #t)) ; '(+ 3 #t)
(+ 3 #t) ; Error

• You may also see the single quote ‘ character used
as syntactic sugar

quasiquote
• Inserts evaluated tokens into a quote
• Convenient for generating dynamic token lists
• Use unquote to escape a quasiquote back to

evaluated Racket code
• A quasiquote and quote are equivalent unless

we use an unquote operation

15

quasiquote Examples

16

(quasiquote (+ 3 (unquote(+ 2 2)))) ; '(+ 3 4)
(quasiquote
 (string-append
 "I love CSE"
 (number->string
 (unquote (+ 3 338)))))
; '(string-append "I love CSE" (number->string 341))

• You may also see the backtick ` character used as
syntactic sugar for quasiquote
• The comma character , is used as syntactic sugar

for unquote

Self Interpretation

• Many languages provide an eval function or
something similar
• Performs interpretation or compilation at runtime
• Needs full language implementation during runtime

• It's useful, but there's usually a better way
• Makes analysis, debugging difficult

17

eval
• Racket's eval operates on lists of tokens
• Like those generated from quote and
quasiquote
• Treat the input data as a program and evaluate it

18

eval examples

19

(define quoted (quote (+ 3 4)))
(eval quoted) ; 7
(define bad-quoted (quote (+ 3 #t)))
(eval bad-quoted) ; Error
(define qquoted (quasiquote (+ 3 (unquote(+ 2 2)))))
(eval qquoted) ; 7
(define big-qquoted
 (quasiquote
 (string-append
 "I love CSE"
 (number->string
 (unquote (+ 3 338))))))
(eval big-qquoted) ; “I love CSE341”

RackUnit

• Unit testing is built into the standard library
• http://docs.racket-lang.org/rackunit/

• Built in test functions to make testing your code
easier
• Test for equality, check-eq?
• Test for True, check-true
• Test for raised exception, check-exn
• and many more

20

Variable Number of Arguments

• Some functions (like +) can take a variable number
of arguments
• There is syntax that lets you define your own

21

(define fn-any
 (lambda xs ; any number of args
 (print xs)))
(define fn-1-or-more
 (lambda (a . xs) ; at least 1 arg
 (begin (print a) (print xs))))
(define fn-2-or-more
 (lambda (a b . xs) ; at least 2 args
 (begin (print a) (print a) (print xs))))

apply
• Applies a list of values as the arguments to a

function in order by position

22

(define fn-any
 (lambda xs ; any number of args
 (print xs)))
(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4)) ; 10
(apply max (list 1 2 3 4)) ; 4

