
CSE 341:
Programming Languages

Section AC with Nate Yazdani

agenda
• review: eval, quote, and quasiquote

• overview of some Ruby features
• arrays
• blocks
• ranges
• hashes
• reflection

eval, quote, and
quasiquote

• syntactically, Racket code can be thought of as a
(possibly nested) list of tokens (e.g., numbers, strings,
and symbols)

• quote-ing a parenthesized expression gives you that list

• eval interprets such a list as Racket syntax for
execution

• quasiquote-ing lets you unquote to evaluate before
quoting a subexpression

eval, quote, and
quasiquote

• syntactically, Racket code can be thought of as a
(possibly nested) list of tokens (e.g., numbers, strings,
and symbols)

• quote-ing a parenthesized expression gives you that list

• eval interprets such a list as Racket syntax for
execution

• quasiquote-ing lets you unquote to evaluate before
quoting a subexpression

“identifier values”

could also build your own lists

‘e same as (quote e)

`e same as (quasiquote e)

,e same as (unquote e)

quotation
(define x 5)
(define y 7)

(+ 1 (* x y)) ; 36
(quote (+ 1 (* x y))) ; (list ‘+ 1 (list ‘* ‘x ‘y))
(eval (quote (+ 1 (* x y)))) ; 36

(+ x y #t) ; error!
(quote (+ x y #t)) ; (list ‘+ ‘x ‘y #t)

(+ x (* y 2)) ; 19
(quasiquote (+ x (unquote (* y 2)))) ; (list ‘+ ‘x 14)

Ruby

arrays
• most common data structure in Ruby

• comes with lots of built-in functionality

• dynamically typed, may store “heterogeneous”
elements

• compared to other languages, Ruby arrays are
• more permissive (fewer operations are errors)
• more flexible
• less efficient

arrays
• most common data structure in Ruby

• comes with lots of built-in functionality

• dynamically typed, may store “heterogeneous”
elements

• compared to other languages, Ruby arrays are
• more permissive (fewer operations are errors)
• more flexible
• less efficient

both good and bad

array operations
• length: a.size is the number of elements stored in a

• indexing:
• if i ≥ 0, then a[i] is the element stored at index i
• if i < 0, then a[i] is a[a.size + i]

• construction:
• [v0, …, vn] is an array literal
• Array.new(n) returns an n-element array of nil
• Array.new(n, v) returns an n-element array of the result of v
• Array.new(n) { e } returns an n-element array of the result

of e for each position
• Array.new(n) { |i| e } constructs an n-element array with

the result of e for each position with the index bound to name i

array operations
• append: a + b = [a[0], a[1], …, b[0], b[1], …]

• add or remove from the back (i.e., a[-1]):
• a.push v adds v to the back of the array a
• a.pop removes and returns the element at the back of

the array a

• add or remove from the front (i.e., a[0]):
• a.shift removes and returns the element at the front of

the array a, shifting other indices down by 1
• a.unshift v adds v to the front of the array a, shifting all

indices up by 1

arrays as stacks/queues
• push: a.push v

• pop: a.pop

• enqueue: a.push v

• dequeue: a.unshift

arrays as tuples
• a tuple (e.g., in SML) stores a fixed number of

values of different types

• in Ruby, an array serves that purpose just fine:
[true, “whoop whoop”, 42]

arrays as sets
• set union: a1 | a2 returns an array of the distinct

elements in either or both of a1 and a2

• set intersection: a1 & a2 returns an array of the
distinct elements in both a1 and a2

• set difference: a1 - a2 returns an array of the
distinct elements in a1 but not in a2

array slices
• an array slice constructs a new array from an

interval of another

• a[i, n] is a slice of the array a from i to i + n - 1

• similar syntax to update an array interval all at once
• a[i, n] = [vi, …, vi+n-1]
• not the same as creating a slice and then

assigning that!

blocks
• similar to closures in some ways

• has lexical scope
• passed to method calls

• different in others
• can’t store in a variable
• might receive only some arguments (nil default)

object.method(v0, …, vn) { |x0, …, xn| e }

object.method(v0, …, vn) do |x0, …, xn|
 e
end

iterators
• in Ruby, for and while loops are rarely used

• instead, call an iterator with a block for your “loop
body”

a = [1, 2, 3, 4]
a.map { |x| x * x } # [1, 4, 9, 16]
a.each { |x| puts x } # prints 1 to 4
a.inject(0) { |n, x| n + x } # 10
a.select { |x| x > 2 } # [1, 2]
a.any? { |x| x > 2 } # true
a.all? { |x| x > 2 } # false

iterators
• in Ruby, for and while loops are rarely used

• instead, call an iterator with a block for your “loop
body”

a = [1, 2, 3, 4]
a.map { |x| x * x } # [1, 4, 9, 16]
a.each { |x| puts x } # prints 1 to 4
a.inject(0) { |n, x| n + x } # 10
a.select { |x| x > 2 } # [1, 2]
a.any? { |x| x > 2 } # true
a.all? { |x| x > 2 } # false

by default, a.any? and a.all? checks
if any/all elements are “true,” which in
Ruby means neither false nor nil

don’t iterators kinda sound
like higher-order functions?

ranges
• a range is an efficient representation of a sequence

of contiguous integers

• literal: i..j

• array conversion: r.to_a

• in some ways, can iterate over ranges like arrays,
e.g., r.map, r.each, and r.inject

hashes
• a hash (sometimes called a dictionary) uniquely maps

some set of keys (h.keys) to values (h.values)

• literal: { k1 => v1, …, kn => vn }

• lookup: h[k]

• update: h[k] = v

• removal: h.delete(k)

• iteration: h.each { |k,v| e }

symbols
• like in Racket, a symbol is a “special string” that is

more efficient to use after initial creation

• when Ruby code uses the same “constant string”
frequently, then symbols are typically preferred

• literal: :woo, :woot_woot,
• not :woot-woot, though

symbols
• like in Racket, a symbol is a “special string” that is

more efficient to use after initial creation

• when Ruby code uses the same “constant string”
frequently, then symbols are typically preferred

• literal: :woo, :woot_woot,
• not :woot-woot, though

you can think of symbols as strings
cached by the language runtime

duck typing
• in Ruby (much like Python), “duck typing” is a

pervasive programming philosophy leveraging
dynamic typing

• this practice roughly corresponds to using
permissive, informal interfaces, so you can make
one class (e.g., Range) behave like another (e.g.,
Array)

• can also check the actual class (o.class) and
even get a list of supported methods (o.methods)

duck typing
• in Ruby (much like Python), “duck typing” is a

pervasive programming philosophy leveraging
dynamic typing

• this practice roughly corresponds to using
permissive, informal interfaces, so you can make
one class (e.g., Range) behave like another (e.g.,
Array)

• can also check the actual class (o.class) and
even get a list of supported methods (o.methods)

“if it looks like a duck and
quacks like a duck…”

quick demo

Ruby exercises
write a Ruby method squares taking two arguments
(say, a and b) and returning a hash mapping each
integer i in [a, b) to its square i2

write a Ruby method print_hash to print out a hash
{ k1 => v1, …, kn => vn } like the following:

k1: v1

…

kn: vn

