CSE 341:
Programming Languages

Section AC with Nate Yazdani

agenda

* review: eval, quote, and quasiquote

e overview of some Ruby features
e arrays
* pblocks
* ranges
 hashes
e reflection

eval, quote, ana
quasiquote

syntactically, Racket code can be thought of as a
(possibly nested) list of tokens (e.g., numbers, strings,
and symbols)

quote-ing a parenthesized expression gives you that list

eval interprets such a list as Racket syntax for
execution

quasiquote-ing lets you unquote to evaluate before
guoting a subexpression

eval, quote, and
gquasiquote

t code can be thought of as a
st of tokens (e.g., numbers, strings,

‘e same as (quote ¢)

* quote could also build your own lists

“Identifier values”

Jives you that list

 eval interprets such a list as Racket syntax for

"e same as (quasiquote e¢)

 quasiquote-ing lets you unquote to evaluate before
guoting a subexpression

,e same as (unquote e)

guotation

(define x 5)
(define y 7)

(+1 (x xy)) ; 36
(quote (+ 1 (* x y))) 5 (list ¢+ 1 (list ‘% ‘x ‘y))
(eval (quote (+ 1 (*x x vy)))) ;5 36

(+ x y #t) 5 error!
(quote (+ x y #t)) ;5 (list ‘+ ‘x ‘y #t)

(+ x (xy 2)) ;5 19
(quasiquote (+ x (unquote (*x y 2)))) ;5 (list ‘+ ¢‘x 14)

Ruby

arrays

most common data structure in Ruby
comes with lots of built-in functionality

dynamically typed, may store "heterogeneous”
elements

compared to other languages, Ruby arrays are
* more permissive (fewer operations are errors)
* more flexible

* |ess efficient

arrays

most common data structure in Ruby

comes with lots of built-in functionality

dynamically typed, may store "heterogeneous”
elements

both good and bad

guages, Ruby arrays are
* more permissive (fewer operations are errors)
* more flexible

* |ess efficient

array operations

e length: a.size is the number of elements stored in a

e indexing:

if i >0, then a[i] is the element stored at index i
ifi<0,thenali]l isala.s1ze + i]

e construction:

[Vos ...o V,] IS @n array literal

Array.new(n) returns an n-element array of ni'l
Array.new(n, v) returns an n-element array of the result of v
Array.new(n) { e } returns an n-element array of the result
of e for each position

Array.new(n) { |i] e } constructs an n-element array with
the result of e for each position with the index bound to name i

array operations

. append:a + b = [a[0], a[l], =, b[0], b[1], ..]

e add or remove from the back (i.e., a[-1]):
e a.push vadds vtothe back of the array a
* a.pop removes and returns the element at the back of
the array a

e add or remove from the front (i.e., a[0]):
e a.shiftremoves and returns the element at the front of

the array a, shifting other indices down by 1
 a.unshift vadds vto the front of the array a, shifting all

iIndices up by 1

arrays as stacks/queues

e push: a.push v
* DOP: a.pop
e engueue: a.push v

 dequeue: a.unshift

arrays as tuples

* atuple (e.qg., iIn SML) stores a fixed number of
values of different types

* In Ruby, an array serves that purpose just fine:
[true, “whoop whoop”, 42]

arrays as sets

e setunion: a; | a2returns an array of the distinct
elements in either or both of a; and a:

* setintersection: a; & az returns an array of the
distinct elements in both a; and a:

» set difference: a; - a:returns an array of the
distinct elements in a; but not in az

array slices

e an array slice constructs a new array from an
interval of another

e ali, n]isasliceofthearrayafromitoi+n-1

e similar syntax to update an array interval all at once
 ali, n] = [viy ...y Vitn1]
* notthe same as creating a slice and then
assigning that!

DIOCKS

* similar to closures in some ways
* has lexical scope
* passed to method calls

e different in others
e can't store in a variable
* might receive only some arguments (nil default)

object.method (vy, ..., vi) { |x0 ... 5u| € }
object.method(vy, ..., v,) do |xo ..., x|

e
end

iterators

* in Ruby, for and while loops are rarely used

* instead, call an iterator with a block tor your “loop

body”

QO 99 9 9 9 9 9

= [1, 2, 3, 4]

.map { |x| x * x } # [1, 4, 9, 16]
.each { |x| puts x } # prints 1 to 4
.inject(0) { |n, x| n + x } # 10
.select { |x|] x > 2 } # [1, 2]

.any? { |x|] x > 2 } # true

.all? { |x] x > 2 } # false

iterators

don't iterators kinda sound

* In Ruby, for anc ike higher-order functions?

* instead, call an iterator with a block tor your “loop
body”

= [1, 2, 3, 4]

by default, a.any? and a.all? checks S

it any/all elements are “true,” which in
Ruby means neither false nor nil

.any? { |x|] x > 2 } # true
.all? { |x| x > 2 } # false

QO 99 99 9 99 9 Q

ranges

a range is an efficient representation of a sequence
of contiguous integers

iteral: i. .j
array conversion: r.to_a

IN some ways, can iterate over ranges like arrays,
e.g., r.map, r.each, and r.inject

nashes

a hash (sometimes called a dictionary) uniquely maps
some set of keys (k. keys) to values (h.values)

iteral: { k1 => viy ...y kn => v, }
lookup: A k]

update: hlk] = v

removal: h.delete (k)

teration: h.each { |k,v| e }

Symbols

* |ike In Racket, a symbolis a “special string” that Is
more efficient to use after initial creation

* when Ruby code uses the same “constant string”
frequently, then symbols are typically preferred

e |iteral: :woo, :woot _woot,
 Not :woot-woot, though

you can think of symbols as strings

cached by the language runtime

* |Ike In Racket, a symbolis a “special string” that is
more efficient to use after initial creation

* when Ruby code uses the same “constant string”
frequently, then symbols are typically preferred

e |iteral: :woo, :woot_woot,
e Not :woot-woot, though

duck typing

* In Ruby (much like Python), “"duck typing” is a
pervasive programming philosophy leveraging
dynamic typing

* this practice roughly corresponds to using
permissive, informal interfaces, so you can make
one class (e.g., Range) behave like another (e.g.,

Array)

e can also check the actual class (o.class) and
even get a list of supported methods (o .methods)

d UC K “if it looks like a duck and

guacks like a duck...”

* In Ruby (much like Python), “"duck typing” is a
pervasive programming philosophy leveraging
dynamic typing

* this practice roughly corresponds to using
permissive, informal interfaces, so you can make
one class (e.g., Range) behave like another (e.g.,

Array)

e can also check the actual class (o.class) and
even get a list of supported methods (o .methods)

quick demo

Ruby exercises

write a Ruby method squares taking two arguments

(say, a and b) and returning a hash mapping each
integer i in [a, b) to its square #*

write a Ruby method print_hash to print out a hash
{ ki => viy, ...y ko => v, } like the following:

