
CSE 341 - Programming Languages
Final exam - Spring 2018 - Answer Key

1. (8 points) Write a Racket function multicons that takes an item x, a non-negative integer n, and a list xs;
and returns a new list with n occurrences of x followed by xs. You don’t need to handle bad inputs. Examples:

(multicons 'z 3 '(a b c)) => (z z z a b c)
(multicons '(a b) 3 '(x y z)) => ((a b) (a b) (a b) x y z)
(multicons 'z 0 '(a b c)) => (a b c)

(define (multicons x n xs)
(if (zero? n)

xs
(cons x (multicons x (- n 1) xs))))

Or here is a nice tail-recursive solution. (Both would receive full credit though.)

(define (multicons x n xs)
(if (zero? n)

xs
(multicons x (- n 1) (cons x xs))))

1

2. (10 points) Suppose we have the following class in Ruby:

class Toy

def initialize(size, type)
@size = size
@type = type

end
The goodness method returns a number indicating how good
the toy is. The default is that bigger is better!
def goodness

size
end

end

(a) Add code to Toy to define public getters for size and type (but not setters), and to mix in the
Comparablemodule. Write your extra code in the blank spaces in the Toy definition above. To compare
two toys, compare their goodness. You should define in Toy the method needed by Comparable; this
should then automatically let you compare two toys t1 and t2 using t1>t2, t1<t2, t1==t2, and so
on, without needing to define <, >, and so on in Toy. Hint: 3<=>10 evaluates to -1.

class Toy
include Comparable
attr_reader :size, :type

def initialize(size, type)
@size = size
@type = type

end

The goodness method returns a number indicating how good
the toy is. The default is that bigger is better!
def goodness

size
end

def <=> other
goodness <=> other.goodness

end

end

(b) Write a subclass of Toy called StuffedAnimal.

• StuffedAnimal has the same fields as Toy plus numHugsGiven.
• numHugsGiven should be 0 on initialization.

2

• The new initialize method for StuffedAnimal should still take 2 arguments: size and
type. For full credit, when possible reuse relevant methods inherited from Toy.

• Redefine goodness for StuffedAnimal to be the product of its size and the number of hugs
given.

• Add a public method hug that increments numHugsGiven by 1 when called.
• Add a public getter for numHugsGiven.

class StuffedAnimal < Toy
attr_reader :numHugsGiven
def initialize(size, type)

super(size, type)
@numHugsGiven = 0

end
def goodness

size*numHugsGiven
end
def hug

@numHugsGiven = numHugsGiven+1
end

end

3

3. (10 points) Write a Haskell function indices that takes a item and a list of that same type of item, and returns
a list of the positions of that item in the list. You can use a helper function if needed. Also give the most general
type of the indices function. Examples:

indices 'b' "ababb" => [1,3,4]
indices true [false,false,true] => [2]
indices 'x' "abc" => []

indices x xs = helper x 0 xs

helper x n [] = []
helper x n (y:ys) =

if x==y
then n : helper x (n+1) ys
else helper x (n+1) ys

indices :: (Num a, Eq t) => t -> [t] -> [a]

Or here is a version that doesn’t use a helper function:

indices x [] = []

indices x (y:ys) = if x==y then 0 : rest else rest
where rest = map (+1) (indices x ys)

4

4. (6 points) What is the output from the following Ruby program? Write the output on the numbered lines. Hint:
puts for a hash prints like this: {"x"=>100}.

def test1(a,b)
a["x"] = "squid"
b["x"] = "clam"

end
def test2(a,b)

a["x"] = "tuna"
b = {"x"=>"starfish"}

end

a = Hash.new
test1(a,a)
puts a
test2(a,a)
puts a

b = Hash.new
c = Hash.new
test1(b,c)
puts b
puts c
test2(b,c)
puts b
puts c

{"x"=>"clam"}

{"x"=>"tuna"}

{"x"=>"squid"}

{"x"=>"clam"}

{"x"=>"tuna"}

{"x"=>"clam"}

5

5. (6 points) Suppose that Ruby passed parameters by reference. What would the output be in that case for the
program in Question 4?

{"x"=>"clam"}

{"x"=>"starfish"}

{"x"=>"squid"}

{"x"=>"clam"}

{"x"=>"tuna"}

{"x"=>"starfish"}

6

6. (10 points) Write a Prolog rule index_of(X,Xs,N) that finds the element at a given position in a list. You
can assume that N is an integer in the goal. However, either X or Xs or both could be variables. Use is for
arithmetic. Examples:

index_of(X,[a,b,c,d],2) should succeed with X=c

index_of(X,[a,b,c,d],10) should fail

index_of(X,[],0) should fail

index_of(X, [X|_], 0).
index_of(X, [_|Xs], I) :- I > 0, I2 is I-1, index_of(X, Xs, I2).

7. (6 points) Using your rule from Question 6, what are all the answers returned for the following goals? If there
are infinitely many, give the first three. Write false if the derivation fails. If your answer involves variables
generated by Prolog, make up names like this: _42 (the exact number you use in the name doesn’t matter).

(a) index_of(b,[a,b,c,d],3) =>
false

(b) index_of(a,Xs,0) =>
Xs = [a|_1]

(c) index_of(a,Xs,2) =>
Xs = [_2, _3, a|_4

7

8. (10 points) Rewrite your Prolog rule from Question 6 to use constraints on integers, using the clpfd library. Hint:
to remind you of the syntax for constraints in clpfd, here are examples of constraints on K: K#>5, K#=J+4,
K#>=0.

index_of(X, [X|_], 0).
index_of(X, [_|Xs], I) :- I#>0, J#=I-1, index_of(X, Xs, J).

9. (6 points) Using your improved rule from Question 8, what are all the answers returned for the following goals?
If there are infinitely many, give the first three. Write false if the derivation fails. If your answer involves
variables generated by Prolog, make up names like this: _42 (the exact number you use in the name doesn’t
matter).

(a) index_of(b,[a,b,c,d,a,b,c,d],N) =>
N=1
N=5

(b) index_of(X,[a,b,c],N) =>
X=a, N=0
X=b, N=1
X=c, N=2

(c) index_of(a,Xs,N) =>
Xs=[a|_1], N=0
Xs=[_2,a|_3], N=1
Xs=[_4,_5,a|_6], N=2
. . .

8

10. (10 points) Here are some groups of statements about Java types. Circle all statements that are correct as far as
the Java compiler is concerned. In addition, write an E on the line next to each statement if that statement is
correct as far as the Java compiler is concerned, but that could result in a runtime exception due to a type error.

For example, suppose that one group of statements is
Rectangle2D is a subtype of RectangularShape ______
RectangularShape is a subtype of Rectangle2D ______
Neither is a subtype of the other

You would circle “Rectangle2D is a subtype of RectangularShape” because that statement is correct
as far as the Java compiler is concerned. You would not write an E next to it, since this could never result in a
runtime exception due to a type error. You would not circle the other two statements.

Hint: note that any type T is a subtype of itself.

(a) Integer is a subtype of Object

Object is a subtype of Integer

Neither is a subtype of the other

(b) Integer[] is a subtype of Object[] E

Object[] is a subtype of Integer[]

Neither is a subtype of the other

(c) LinkedList<Integer> is a subtype of LinkedList<Object>

LinkedList<Object> is a subtype of LinkedList<Integer>

Neither is a subtype of the other

(d) LinkedList<?> is a subtype of LinkedList<? extends RectangularShape>

LinkedList<? extends RectangularShape> is a subtype of LinkedList<?>

Neither is a subtype of the other

(e) LinkedList<?> is a subtype of LinkedList<? extends Object>

LinkedList<? extends Object> is a subtype of LinkedList<?>

Neither is a subtype of the other

9

11. (10 points) True or false? Write T or F on the line in front of the question.

(a) F Racket’s eq? function could be added to OCTOPUS as a new primitive function.
Object identity is not meaningful for ordinary Haskell data, so adding eq? to
OCTOPUS would require changing how OCTOPUS data is represented. For example,
(equal? (cons 1 '()) (cons 1 '())) evaluates to #t in both Racket and OCTOPUS,
as it should. What about (eq? (cons 1 '()) (cons 1 '()))? In Racket this evaluates to
#f — getting this to also evaluate to #f in OCTOPUS would require changing the representation of
OctoValue.

(b) T Adding support for floating-point numbers to OCTOPUS would require changes to the lexer and/or parser,
in addition to changes to the interpreter.

(c) F The class Class in Ruby is a subclass of itself.

(d) T The class Class in Ruby is an instance of itself.

(e) F Any two Haskell lists can be tested for equality, since the list type is in the Eq type class.
(Consider a list of functions, for example [sin,cos]==[sin,cos]. Two lists can be tested for equal-
ity only if the elements are in the Eq type class.)

(f) T Any let* expression in Racket can be rewritten as a set of nested let expressions.

(g) F Adding a cut to a Prolog program may change the number of answers that are returned, but will never
result in different answers.
We ended up throwing out this question. The intended answer was F (consider removing the cut from the
definition of not in the lecture notes, since with the cut you can get a fail and if no cut some answer) —
but you could argue that is still just changing the number of answers.

(h) F Java methods can be contravariant in the return type.
(But they can be covariant in the return type.)

(i) T Java methods can be overloaded based on the declared types of the method arguments.

(j) F In Ruby, a singleton class has only one superclass, but other classes may have multiple superclasses.

12. (12 points) Consider the following Ruby class definitions.

class Book
attr_reader :author, :title
def initialize(author, title)

@author = author
@title = title

end
def description

title + " by " + author + "."
end

end

class Textbook < Book
attr_reader :subject
def initialize(author, title, subject)

super(author,title)
@subject = subject

end
def description

return super + " A textbook about " + subject + "."
end

10

end

class AnonymouslyWrittenBook < Book
def initialize(title)

@title = title
end
def author

"anonymous"
end

end

Suppose we make three objects b, t, and a by evaluating these statements:

b = Book.new("J.K. Rowling", "Harry Potter and the Deathly Hallows")
t = Textbook.new("James Stewart", "Calculus", "mathematics")
a = AnonymouslyWrittenBook.new("Haskell Good")

Then what is the result of evaluating each of these expressions? Hint: the instance_variables method
returns an array of instance variable names, like this: [:@x, :@y].

b.description
Harry Potter and the Deathly Hallows by J.K. Rowling.

t.description
Calculus by James Stewart. A textbook about mathematics.

a.description
Haskell Good by anonymous.

b.instance_variables
[:@author, :@title]

t.instance_variables
[:@author, :@title, :@subject]

a.instance_variables
[:@title]

Note that since it doesn’t call the inherited initialize method, a doesn’t have an author instance variable.

11

