
1

CSE341: Programming Languages

Late Binding in Ruby
Multiple Inheritance, Interfaces, Mixins

Alan Borning
Spring 2018

Today

Dynamic dispatch aka late binding aka virtual method calls
– Call to self.m2() in method m1 defined in class C can

resolve to a method m2 defined in a subclass of C
– Important characteristic of OOP

Need to define the semantics of objects and method lookup as
carefully as we defined variable lookup for functional programming

Then consider advantages, disadvantages of dynamic dispatch

Recall earlier encoding OOP / dynamic dispatch with functions in
Racket (bank account example)

Resolving identifiers

The rules for "looking up" various symbols in a programming
language is a key part of the language's definition

– So discuss in general before considering dynamic dispatch

• Haskell: Look up variables in the appropriate environment
– Key point of closures' lexical scope is defining "appropriate”

• Racket: Like Haskell plus hygienic macros

• Ruby:
– Local variables and blocks mostly like Haskell and Racket
– But also have instance variables, class variables, and

methods (all more like record fields)

Ruby instance variables and methods

• self maps to some "current" object
• Look up local variables in environment of method
• Look up instance variables using object bound to self
• Look up class variables using object bound to self.class

A syntactic distinction between local/instance/class means there is no
ambiguity or shadowing rules

– Contrast: Java locals shadow fields unless use this.f

But there is ambiguity/shadowing with local variables and zero-
argument no-parenthesis calls

– What does m+2 mean?
• Local shadows method if exists unless use m()+2
• Contrast: Java forces parentheses for syntactic distinctions

2

Method names are different

• self, locals, instance variables, class variables all map to objects

• Have said "everything is an object" but that's not quite true:

– Method names

– Blocks

– Argument lists

• First-class values are things you can store, pass, return, etc.

– In Ruby, only objects (almost everything) are first-class

– Example: cannot do e.(if b then m1 else m2 end)
• Have to do if b then e.m1 else e.m2 end

– Example: can do (if b then x else y).m1

Ruby message lookup
The semantics for method calls aka message sends

e0.m(e1,…,en)
1. Evaluate e0, e1, …, en to objects obj0, obj1, …, objn

– As usual, may involve looking up self, variables, fields, etc.
2. Let C = the class of obj0 (every object has a class)
3. If m is defined in C, pick that method, else recur with the superclass

of C unless C is already Object
– If no m is found, call method_missing instead

• Definition of method_missing in Object raises an error

4. Evaluate body of method picked:
– With formal arguments bound to obj1, …, objn
– With self bound to obj0 -- this implements dynamic dispatch!

Note: Step (3) complicated by mixins: will revise definition later

Java method lookup (very similar)
The semantics for method calls aka message sends

e0.m(e1,…,en)
1. Evaluate e0, e1, …, en to objects obj0, obj1, …, objn

– As usual, may involve looking up this, variables, fields, etc.
2. Let C = the class of obj0 (every object has a class)
3. [Complicated rules to pick "the best m" using the static types of e0,

e1, …, en]
– Static checking ensures an m, and in fact a best m, will always be

found
– Rules similar to Ruby except for this static overloading
– No mixins to worry about (interfaces irrelevant here)

4. Evaluate body of method picked:
– With formal arguments bound to obj1, …, objn
– With this bound to obj0 -- this implements dynamic dispatch!

The punch-line again

e0.m(e1,…,en)

To implement dynamic dispatch, evaluate the method body with
self mapping to the receiver

• That way, any self calls in the body use the receiver's class,
– Not necessarily the class that defined the method

• This much is the same in Ruby, Java, C#, Smalltalk, etc.

3

Comments on dynamic dispatch

• This is why last lecture's distFromOrigin2 worked in
PolarPoint
– distFromOrigin2 implemented with self.x, self.y
– If receiver's class is PolarPoint, then will use PolarPoint's
x and y methods because self is bound to the receiver

• More complicated than the rules for closures
– Have to treat self specially
– May seem simpler only because you learned it first
– Complicated doesn't imply superior or inferior

• Depends on how you use it…
• Overriding does tend to be overused

A simple example
In Ruby (and other object-oriented languages), subclasses can
change the behavior of methods they don't override
class A

def even x
if x==0 then true else odd (x-1) end

end
def odd x

if x==0 then false else even (x-1) end
end

end
class B < A # improves odd in B objects

def even x ; x % 2 == 0 end
end
class C < A # breaks odd in C objects

def even x ; false end
end

The OOP trade-off

Any method that makes calls to overridable methods can have its
behavior changed in subclasses even if it is not overridden

– Maybe on purpose, maybe by mistake

• Makes it harder to reason about "the code you're looking at"
– Can avoid by disallowing overriding (Java final) of helper

methods you call

• Makes it easier for subclasses to specialize behavior without
copying code
– Provided method in superclass isn't modified later

What next?

Have used classes for OOP's essence: inheritance, overriding,

dynamic dispatch

Now, what if we want to have more than just 1 superclass

• Multiple inheritance: allow > 1 superclasses

– Useful but has some problems (see C++)

• Java-style interfaces: allow > 1 types

– Mostly irrelevant in a dynamically typed language, but fewer

problems

• Ruby-style mixins: 1 superclass; > 1 method providers

– Often a fine substitute for multiple inheritance and has fewer

problems

4

Multiple Inheritance

• If inheritance and overriding are so useful, why limit ourselves to one
superclass?
– Because the semantics is often awkward (next couple of slides)
– Because it makes static type-checking harder (not discussed)
– Because it makes efficient implementation harder (not discussed)

• Is it useful? Sure!
– Example: Make a ColorPt3D by inheriting from Pt3D and
ColorPt (or maybe just from Color)

– Example: Make a StudentAthlete by inheriting from Student
and Athlete

– With single inheritance, end up copying code or using non-OOP-
style helper methods

Trees, dags, and diamonds

• Note: The phrases subclass, superclass can be ambiguous
– There are immediate subclasses, superclasses
– And there are transitive subclasses, superclasses

• Single inheritance: the class hierarchy is a tree
– Nodes are classes
– Parent is immediate superclass
– Any number of children allowed

• Multiple inheritance: the class hierarchy no longer a tree
– Cycles still disallowed (a directed-acyclic graph)
– If multiple paths show that X is a (transitive) superclass

of Y, then we have diamonds

A

B C D

E

X

Y

V W
Z

What could go wrong?

• If V and Z both define a method m,
what does Y inherit? What does super mean?
– Directed resends useful (e.g., Z::super)

• What if X defines a method m that Z but not V overrides?
– Can handle like previous case, but sometimes undesirable

(e.g., ColorPt3D wants Pt3D's overrides to "win")

• If X defines fields, should Y have one copy of them (f) or two
(V::f and Z::f)?
– Turns out each behavior is sometimes desirable (next slides)
– So C++ has (at least) two forms of inheritance

X

Y

V W
Z

3DColorPoints
If Ruby had multiple inheritance, we would want ColorPt3D to
inherit methods that share one @x and one @y

class Pt
attr_accessor :x, :y
…

end
class ColorPt < Pt
attr_accessor :color
…

end
class Pt3D < Pt
attr_accessor :z
… # override methods like distance?

end
class ColorPt3D < Pt3D, ColorPt # not Ruby!
end

5

ArtistCowboys
This code has Person define a pocket for subclasses to use, but
an ArtistCowboy wants two pockets, one for each draw method

class Person
attr_accessor :pocket
…

end
class Artist < Person # pocket for brush objects
def draw # access pocket
…

end
class Cowboy < Person # pocket for gun objects
def draw # access pocket
…

end
class ArtistCowboy < Artist, Cowboy # not Ruby!
end

Java interfaces
Recall (?), Java lets us define interfaces that classes explicitly
implement

interface Example {
void m1(int x, int y);
Object m2(Example x, String y);

}

class A implements Example {
public void m1(int x, int y) {…}
public Object m2(Example e, String s) {…}

}
class B implements Example {

public void m1(int pizza, int beer) {…}
public Object m2(Example e, String s) {…}

}

What is an interface?

• An interface is a type!

– Any implementer (including subclasses) is a subtype of it

– Can use an interface name wherever a type appears

– (In Java, classes are also types in addition to being classes)

• An implementer type-checks if it defines the methods as required

– Parameter names irrelevant to type-checking; it's a bit strange

that Java requires them in interface definitions

• A user of type Example can objects with that type have the

methods promised

– I.e., sending messages with appropriate arguments type-checks

interface Example {
void m1(int x, int y);
Object m2(Example x, String y);

}

Multiple interfaces

• Java classes can implement any number of interfaces

• Because interfaces provide no methods or fields, no questions of
method/field duplication arise
– No problem if two interfaces both require of implementers and

promise to clients the same method

• Such interfaces aren't much use in a dynamically typed language
– We don't type-check implementers
– We already allow clients to send any message
– Presumably these types would change the meaning of is_a?,

but we can just use instance_methods to find out what
methods an object has

6

Why no interfaces in C++?

If you have multiple inheritance and abstract methods (called pure
virtual methods in C++), there is no need for interfaces

• Abstract method: A method declared but not defined in a class.
All instances of the (sub)class must have a definition

• Abstract class: Has one or more abstract methods; so disallow
creating instances of this exact class
– Have to subclass and implement all the abstract methods to

create instances

• Little point to abstract methods in a dynamically typed language

• In C++, instead of an interface, make a class with all abstract
methods and inherit from it – same effect on type-checking

Mixins

• A mixin is (just) a collection of methods
– Less than a class: no fields, constructors, instances, etc.
– More than an interface: methods have bodies

• Languages with mixins (e.g., Ruby modules) typically allow a
class to have one superclass but any number of mixins

• Semantics: Including a mixin makes its methods part of the class
– Extending or overriding in the order mixins are included in the

class definition
– More powerful than helper methods because mixin methods

can access methods (and instance variables) on self not
defined in the mixin

Example
module Doubler

def double
self + self # assume included in classes w/ +

end
end
class String

include Doubler
end
class AnotherPt

attr_accessor :x, :y
include Doubler
def + other

ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans

end

