
CSE341 Section 2:
April 5th, 2018

Warm-up:
Write a function my-xor which takes 2 arguments, here are some examples:
(my-xor #t #f) -> #t
(my-xor (= 1 2) (= 2 3)) -> #f

Starter code:
(define-syntax my-xor
(syntax-rules ()
 ((my-xor)
 (

))))

Note for this one: xor should really be done using a function instead, since we need to evaluate
all its values. This is just for practice.

Q3 (Bonus) — placed here so Q1 and Q2 can have full pages.

Try to implement a macro that represents let*-expressions (call it my-let*). Remember that let*

expressions add each binding to the environment one at a time. This requires a concept we

haven’t discussed in class yet, but is still an interesting problem.

Q1:
The lecture notes for macros include a definition for my-or that works just like the built-in or in

Racket.

(define-syntax my-or
(syntax-rules ()
 ((my-or) #f)
 ((my-or e1 e2 ...)
 (let ([temp e1])
 (if temp
 temp
 (my-or e2 ...))))))

Given this definition, if we expand (my-or (= x 2)), we get

(let ([temp (= x 2)])
 (if temp temp (my-or)))

This would further expand to

(let ([temp (= x 2)])
 (if temp temp #f))

Modify the rule so it just expands (my-or (= x 2)) to (= x 2) instead.

It should still work correctly for (my-or).

Starter code:
(define-syntax modified-or
(syntax-rules ()

Q2:

Let’s try to implement a macro that represents let-expressions (call it parallel-let):

(a): implement parallel-let that allows no variable binding and allows one or more expressions

For example:
(parallel-let () (printf “cse”)) -> “cse”
(parallel-let () (printf “341”) (- 2 4)) -> “341”-2

(b): implement parallel-let that allows one or more variable binding with one or more

expressions

For example:
(parallel-let (x y z) (3 2 6) (+ x y z)) -> 11

Starter code:
(define-syntax parallel-let
(syntax-rules ()

