CSE341 Section3:

April 12 ${ }^{\text {th }}, 2018$

Warm-up:

Write a Haskell function to find the value of the quadratic expression $a x^{2}+b x+c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and x are any arbitrary Doubles. What is the type of this function?
(Challenge: what if a, b, c, and x were passed as a single tuple?)

Q1:

Write a Haskell function to reverse a list. What is the type of this function?
(Challenges: what if the function reversed the doubled value of the list? That is $[1,2,3]->[6,4,2]$.
Also, what if the function were tail recursive?)

Q2:
Consider the following Haskell function definitions.

```
alan_example (x:xs) = "something aquatic"
isOdd x = elem x [1,3..x]
slope (x1,y1) (x2,y2) = (y2 - y1) / (x2 - x1)
my_all p y =
        case y of
            [] -> True
            (x:xs) -> p x && my_all p xs
```

Below are a list of possible types for each Haskell function. Next to each one, indicate if it is V (valid) or IV (invalid). That is, if you were to add these as type declarations, would it compile?

```
alan_example :: [a] -> [Char]
alan_example :: (a) -> [Char]
alan_example :: [Integer] -> [Char]
isOdd :: Integer -> Bool
isOdd :: Double -> a
isOdd :: a -> Bool
slope :: (Integer, Integer) -> (Integer, Integer) -> Double
slope :: (Double, Double) -> (Double, Double) -> Double
slope :: (Integer, Double) -> (Integer, Double) -> Double
my_all :: (a -> Bool) -> [a] -> Bool
my_all :: (Integer -> Bool) -> [Integer] -> Bool
my_all :: (Integer -> a) -> [Integer] -> Bool
```


Q3:

Write a function my_map2 that is analogous to map but works for functions of two, equally long arguments rather than one. What is its type? For example, "my_map2 (+) [1,2,3] [4,5,6]" should evaluate to " $[5,7,9]$ ". (Challenges: write another function "double" that uses my_map2. Also, extend my_map2 to work for any length arguments by choosing the length of the smaller list as the result).

