
CSE341 Section3:
April 12​th​, 2018

Warm-up:
Write a Haskell function to find the value of the quadratic expression , where a,b,c,x xa 2 + b + c

and x are any arbitrary Doubles. What is the type of this function?
(Challenge: what if a,b,c, and x were passed as a single tuple?)

Q1:
Write a Haskell function to reverse a list. What is the type of this function?
(Challenges: what if the function reversed the doubled value of the list? That is [1,2,3] -> [6,4,2].
Also, what if the function were tail recursive?)

Q2:
Consider the following Haskell function definitions.

alan_example (x:xs) = "something aquatic"

isOdd x = elem x [1,3..x]

slope (x1,y1) (x2,y2) = (y2 - y1) / (x2 - x1)

my_all p y =

case y of

[] -> True

(x:xs) -> p x && my_all p xs

Below are a list of possible types for each Haskell function. Next to each one, indicate if it is V
(valid) or IV (invalid). That is, if you were to add these as type declarations, would it compile?

alan_example :: [a] -> [Char]

alan_example :: (a) -> [Char]

alan_example :: [Integer] -> [Char]

isOdd :: Integer -> Bool

isOdd :: Double -> a

isOdd :: a -> Bool

slope :: (Integer, Integer) -> (Integer, Integer) -> Double

slope :: (Double, Double) -> (Double, Double) -> Double

slope :: (Integer, Double) -> (Integer, Double) -> Double

my_all :: (a -> Bool) -> [a] -> Bool

my_all :: (Integer -> Bool) -> [Integer] -> Bool

my_all :: (Integer -> a) -> [Integer] -> Bool

Q3:
Write a function my_map2 that is analogous to map but works for functions of two, equally
long arguments rather than one. What is its type? For example, “my_map2 (+) [1,2,3] [4,5,6]”
should evaluate to “[5,7,9]”. (Challenges: write another function “double” that uses my_map2.
Also, extend my_map2 to work for any length arguments by choosing the length of the smaller
list as the result).

