

 Name : __ (​please print clearly!​)

CSE 341 Winter 2018 Midterm

Please do not turn the page until 12:30.

Rules:

● The exam is closed-book, closed-note, etc. except ​one side​ of a 8.5x11in page.

● Please stop promptly at 1:20.

● There are ​100 points​, distributed ​evenly​ among ​5​ multi-part questions.

● QUESTIONS VARY GREATLY IN DIFFICULTY. GET EASY POINTS FIRST!!!

● The exam is printed double-sided, with pages numbered up to 17.

Advice:

● Read the questions carefully. Understand before you answer.

● Write down thoughts and intermediate steps so we can give partial credit.

● Clearly indicate your final answer.

● Questions are not in order of difficulty. ​Answer everything.

● If you have questions, ask.

● Relax. You are here to learn.

1

 Name : __ (​please print clearly!​)

QUESTION 1 (20 points)

(a) Consider the type ​pos​ and conversions from ​int​ to ​pos​:

(* how “option” is defined in SML, just here for reference *)

datatype ‘a option =

 NONE

 | SOME of ‘a

datatype pos =

 One

 | S of pos

fun pos_of_int i =

 if i <= 0 then NONE

 else if i = 1 then SOME One

 else case pos_of_int (i - 1) of

 NONE => NONE

 | SOME p => SOME (S p)

What is the type of ​pos_of_int​ ? ____________________________________

What does ​(pos_of_int ~1)​ evaluate to ? _____________________________

What does ​(pos_of_int 3)​ evaluate to ? ______________________________

pos_of_int​ is tail recursive : T / F

2

 Name : __ (​please print clearly!​)

(b) Consider this candidate for an “inverse” of ​pos_of_int​, ​int_of_pos​ :

fun int_of_pos p =

 case p of

 One => 1

 | S p’ => 1 + int_of_pos p’

What is the type of ​int_of_pos​ ? ____________________________________

int_of_pos​ is tail recursive : T / F

3

 Name : __ (​please print clearly!​)

(c) Consider this alternative version of ​pos_of_int​ :

fun pos_of_int’ i =

 let fun loop acc i =

 if i = 1

 then acc

 else loop (S acc) (i - 1)

 in

 if i <= 0 then NONE

 else SOME (loop One i)

 end

What is the type of ​pos_of_int’​ ? ____________________________________

pos_of_int’​ is tail recursive : T / F

Is it true that, for all integer arguments ​x​, ​pos_of_int x = pos_of_int’ x​ ?

If so, simply write “Yes” in the blank. If not, please provide an input that causes the two

functions to produce different results.

__

4

 Name : __ (​please print clearly!​)

(d) Consider one more version of ​pos_of_int​ :

exception NonPos

fun pos_of_int’’ i =

 if i <= 0 then raise NonPos

 else if i = 1 then One

 else S (pos_of_int’’ (i - 1))

What is the type of ​pos_of_int’’​ ? ____________________________________

pos_of_int’’​ is tail recursive : T / F

Is it true that, for all integer arguments ​x​, ​pos_of_int x = pos_of_int’’ x​ ?

If so, simply write “Yes” in the blank. If not, please provide an input that causes the two

functions to produce different results.

__

5

 Name : __ (​please print clearly!​)

QUESTION 2 (20 points)

(a) Consider the ​return​ function:

fun return x =

 SOME x

What is the type of ​return​ ? ___

Caveat​: For the next two blanks, ignore the value restriction (that was the weird rule

about not generalizing types if an expression is not a “syntactic value” -- just assume we

can safely generalize types in SML for purposes of answering these).

P.S. If the caveat above makes you feel uncomfortable, don’t worry! You are doing

great and the value restriction is just a weird thing that we’re ignoring here. In fact, you

should just imagine I didn’t say anything at all about it if you can’t quite remember what

it is right now. I promise you don’t need to understand it AT ALL to get these right :)

What does ​(return NONE)​ evaluate to ? _______________________________

What is the type of ​(return NONE)​ ? _________________________________

6

 Name : __ (​please print clearly!​)

(b) This part refers to definitions from Question 1. Consider ​bind​ and ​lift​ :

fun bind x f =

 case x of

 NONE => NONE

 | SOME y => f y

fun lift f =

 fn x => return (f x)

What is the type of ​bind​ ? ___

What is the type of ​lift​ ? ___

What does ​(bind (pos_of_int ~1) (lift int_of_pos))​ evaluate to ?

What does ​(bind (pos_of_int 3) (lift int_of_pos))​ evaluate to ?

What is the type of ​(fn x => bind (pos_of_int x) (lift int_of_pos))​ ?

7

 Name : __ (​please print clearly!​)

(c) Fill in the blanks with the type for each of the following functions.

fun flip f x y =

 f y x

fun get k s =

 s k

flip​ : ___

get​ : ___

(Note: The final page builds on this question for (OPTIONAL) extra credit!)

8

 Name : __ (​please print clearly!​)

QUESTION 3 (20 points)

Consider these types:

datatype a = M

datatype b = P | Q

datatype c = CA of a

 | CB of b

datatype d = DA of d * a

 | DB of d * b

datatype e = EA of e * a

 | EB of b

How many distinct ​values​ are there of each type (e.g., “zero”, “one”, “two”, …, “infinity”)?

a : _________________

b : _________________

c : _________________

d : _________________

e : _________________

9

 Name : __ (​please print clearly!​)

QUESTION 4 (20 points)

(a) Consider this function:

fun snoc (x, xs) =

 case xs of

 [] => [x]

 | x’ :: xs’ => x’ :: snoc (x, xs’)

Circle all the alternate definitions below which are equivalent to the one above:

fun snoc (x, xs) =

 List.rev (x :: xs)

fun snoc (x, xs) =

 x :: (List.rev xs)

fun snoc (x, xs) =

 List.rev (x :: (List.rev xs))

fun snoc (x, xs) =

 [x] @ List.rev xs

fun snoc (x, xs) =

 [xs] @ x

fun snoc (x, xs) =

 xs @ [x]

fun snoc (x, xs) =

 xs :: x

10

 Name : __ (​please print clearly!​)

(b) For reference, here are some curried versions of “hall of fame” list functions we saw

in lecture:

fun append xs ys =

 case xs of [] => ys

 | x :: xs’ => x :: append xs’ ys

fun map f xs =

 case xs of [] => []

 | x :: xs’ => f x :: map f xs’

fun filter f xs =

 case xs of [] => []

 | x :: xs’ => if f x

 then x :: filter f xs’

 else filter f xs’

fun fold f acc xs =

 case xs of [] => acc

 | x :: xs’ => fold f (f acc x) xs’

Which of the pairs of expressions on the ​next page​ are equivalent?

In the left column for each row, please write “​Always​” if the expressions are always

equivalent, “​Pure​” if the expressions are equivalent when ​f​ and ​g​ are pure (always

terminate, never throw exceptions, never read or write references, etc.), or “​No​” if the

expressions are not equivalent. Remember that ​div​ is used for integer division in SML.

The first three rows are filled out as examples. Please write answers clearly!

11

 Name : __ (​please print clearly!​)

Equiv?

Always x + y y + x

Pure f x + g y g y + f x

No x div y y div x

 (fn x => f x) x f x

 (fn x y => f x y) x y f x

 filter f (append xs ys) append (filter f xs) (filter f ys)

 map f fold (fn acc x => f x :: acc) []

 map f fold (fn acc x => acc @ [f x]) []

 map f (append xs ys) append (map f xs) (map f ys)

 map f (map g xs) map (fn x => f (g x)) xs

 filter f (map g xs) map g (filter f xs)

 filter f (filter g xs)
filter (fn x => f x andalso g x)

xs

12

 Name : __ (​please print clearly!​)

QUESTION 5 (20 points)

Consider this signature and module for polymorphic first-in-first-out (FIFO) queues:

signature QUEUE = sig

 type ‘a t

 val empty : ‘a t

 val push : ‘a -> ‘a t -> ‘a t

 val pop : ‘a t -> ((‘a * ‘a t) option)

end

structure FastQueue :> QUEUE = struct

 type ‘a t =

 ‘a list * ‘a list

 val empty =

 ([], [])

 fun push a (xs, ys) =

 (xs, a :: ys)

 fun canon (xs, ys) =

 case xs of [] => (List.rev ys, [])

 | _ => (xs, ys)

 fun pop q =

 case (canon q) of ([], _) => NONE

 | (x :: xs, ys) => SOME (x, (xs, ys))

end

13

 Name : __ (​please print clearly!​)

(a) Complete this alternate implementation of ​QUEUE​ based on lists so that it is

equivalent to ​FastQueue​:

structure ListQueue :> QUEUE = struct

 type ‘a t = ​‘a list

 val empty = (* TODO *)

 fun push a q = (* TODO *)

 fun pop q = (* TODO *)

end

14

 Name : __ (​please print clearly!​)

(b) What invariant does your implementation of ​ListQueue​ maintain?

(c) Why is it important that the type ​t​ for queues is held abstract?

(d) For which operations is your implementation of ​ListQueue​ slower on average than

the corresponding operation in ​FastQueue​?

15

 Name : __ (​please print clearly!​)

EXTREMELY OPTIONAL EXTRA CREDIT (2 points)

Fill in the blanks with the type for the following functions. They depend on definitions

from Question 2.

fun set k v s =

 fn k’ => if k’ = k

 then SOME v

 else s k’

fun wrap f s =

 fn k => bind (s k) f

set​ : __

wrap​ : ___

16

 Name : __ (​please print clearly!​)

MORE EXTREMELY OPTIONAL EXTRA CREDIT (2 points)

The code below uses functions defined earlier in the exam. It has a few subtle type

errors. ​Clearly circle​ ​two​ of them and write a ​brief comment​ explaining why SML will

not be able to type check the program at that point.

infix |>

fun x |> f = f x

fun fact s =

 bind (get "x" s) (fn x =>

 bind (get "ans" s) (fn ans =>

 if x < 1 then

 s

 else (

 s |> set "x" (x - 1)

 |> set "ans" (x * ans)

 |> fact)))

(* note: “print” has type string -> unit *)

fun print_var v s =

 s |> wrap Int.toString

 |> get v

 |> bind (lift print)

val _ =

 (fn x => NONE)

 |> set "x" 5

 |> set "ans" 1

 |> fact

 |> flip bind (print_var "ans")

17

