
CSE341: Programming Languages 
 

Lecture 13 
Racket Introduction

Eric Mullen 
Autumn 2019



CSE341: Programming Languages

Racket
Next two units will use the Racket language (not ML) and the 
DrRacket programming environment (not Emacs) 

– Installation / basic usage instructions on course website 

• Like ML, functional focus with imperative features 
– Anonymous functions, closures, no return statement, etc. 
– But we will not use pattern-matching 

• Unlike ML, no static type system: accepts more programs, but 
most errors do not occur until run-time 

• Really minimalist syntax 

• Advanced features like macros, modules, quoting/eval, 
continuations, contracts, … 
– Will do only a couple of these

Autumn 2019 2



CSE341: Programming Languages

Racket vs. Scheme

• Scheme and Racket are very similar languages 
– Racket “changed its name” in 2010 

• Racket made some non-backward-compatible changes… 
– How the empty list is written 
– Cons cells not mutable 
– How modules work 
– Etc. 
… and many additions 

• Result: A modern language used to build some real systems 
– More of a moving target: notes may become outdated 
– Online documentation, particularly “The Racket Guide”

3Autumn 2019



CSE341: Programming Languages

Getting started

DrRacket “definitions window” and “interactions window” very similar 
to how we used Emacs and a REPL, but more user-friendly 

– DrRacket has always focused on good-for-teaching 
– See usage notes for how to use REPL, testing files, etc. 
– Easy to learn to use on your own, but lecture demos will help 

Free, well-written documentation: 
– http://racket-lang.org/ 
– The Racket Guide especially: 

http://docs.racket-lang.org/guide/index.html

4Autumn 2019



CSE341: Programming Languages

File structure

Start every file with a line containing only 
 #lang racket 
(Can have comments before this, but not code) 

A file is a module containing a collection of definitions (bindings)…

5Autumn 2019



CSE341: Programming Languages

Example

6

#lang racket 

(define x 3)  
(define y (+ x 2))  

(define cube ; function  
  (lambda (x)  
    (* x (* x x))))  

(define pow ; recursive function 
  (lambda (x y)  
    (if (= y 0) 
        1 
        (* x (pow x (- y 1))))))

Autumn 2019



CSE341: Programming Languages

Some niceties
Many built-in functions (a.k.a. procedures) take any number of args  

– Yes * is just a function 
– Yes you can define your own variable-arity functions (not 

shown here) 

Better style for non-anonymous function definitions (just sugar):

7

(define cube  
  (lambda (x)  
    (* x x x)))

(define (cube x) 
  (* x x x)) 

(define (pow x y)  
    (if (= y 0) 
        1 
        (* x (pow x (- y 1)))))

Autumn 2019



CSE341: Programming Languages

An old friend: currying
Currying is an idiom that works in any language with closures 

– Less common in Racket because it has real multiple args

8

(define pow 
  (lambda (x) 
    (lambda (y) 
      (if (= y 0) 
          1 
          (* x ((pow x) (- y 1))))))) 

(define three-to-the (pow 3)) 
(define eightyone (three-to-the 4)) 
(define sixteen ((pow 2) 4)) 

Sugar for defining curried functions:  

(No sugar for calling curried functions)
(define ((pow x) y) (if …

Autumn 2019



CSE341: Programming Languages

Another old-friend: List processing

Empty list:                null 
Cons constructor:    cons   
Access head of list: car    
Access tail of list:     cdr 

Check for empty:     null? 

Notes: 
– Unlike Scheme, () doesn’t work for null, but '() does 
– (list e1 … en) for building lists 
– Names car and cdr are a historical accident

9Autumn 2019



CSE341: Programming Languages

Examples

10

(define (sum xs) 
  (if (null? xs) 
      0 
      (+ (car xs) (sum (cdr xs))))) 

(define (my-append xs ys) 
  (if (null? xs) 
      ys 
      (cons (car xs) (my-append (cdr xs) ys)))) 

(define (my-map f xs) 
  (if (null? xs) 
      null 
      (cons (f (car xs)) (my-map f (cdr xs)))))

Autumn 2019



CSE341: Programming Languages

Racket syntax

Ignoring a few “bells and whistles,”  
   Racket has an amazingly simple syntax 

A term (anything in the language) is either: 
– An atom, e.g., #t, #f,  34, "hi", null, 4.0, x, … 
– A special form, e.g., define, lambda, if 

• Macros will let us define our own 
– A sequence of terms in parens: (t1 t2 … tn) 

• If  t1 a special form, semantics of sequence is special 
• Else a function call 

• Example: (+ 3 (car xs)) 
• Example: (lambda (x) (if x  "hi" #t))

11Autumn 2019



CSE341: Programming Languages

Brackets

Minor note: 

   Can use [ anywhere you use (, but must match with ] 
– Will see shortly places where […] is common style 
– DrRacket lets you type ) and replaces it with ] to match

12Autumn 2019



CSE341: Programming Languages

Why is this good?

By parenthesizing everything, converting the program text into a 
tree representing the program (parsing) is trivial and unambiguous 

– Atoms are leaves 
– Sequences are nodes with elements as children 
– (No other rules) 

Also makes indentation easy 

Example: 

No need to discuss “operator precedence” (e.g., x + y * z)

13

(define cube  
  (lambda (x)  
    (* x x x)))

define

cube lambda

x *

xx x

Autumn 2019



CSE341: Programming Languages

Parenthesis bias

• If you look at the HTML for a web page, it takes the same 
approach: 
– (foo  written <foo> 
– ) written </foo> 

• But for some reason, LISP/Scheme/Racket is the target of 
subjective parenthesis-bashing 
– Bizarrely, often by people who have no problem with HTML 
– You are entitled to your opinion about syntax, but a good 

historian wouldn’t refuse to study a country where he/she 
didn’t like people’s accents

14Autumn 2019



CSE341: Programming Languages 15

http://xkcd.com/297/

Autumn 2019



CSE341: Programming Languages

Parentheses matter

You must break yourself of one habit for Racket:  

– Do not add/remove parens because you feel like it  
• Parens are never optional or meaningless!!! 

– In most places (e) means call e with zero arguments 

– So ((e)) means call e with zero arguments and call the 
result with zero arguments 

Without static typing, often get hard-to-diagnose run-time errors

16Autumn 2019



CSE341: Programming Languages

Examples (more in code)

Correct:  

Treats 1 as a zero-argument function (run-time error): 

Gives if 5 arguments (syntax error) 

3 arguments to define (including (n)) (syntax error) 

Treats n as a function, passing it * (run-time error)

17

(define (fact n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) (1)(* n (fact (- n 1)))))

(define (fact n)(if = n 0 1 (* n (fact (- n 1)))))

(define fact (n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) 1 (n * (fact (- n 1)))))

Autumn 2019



CSE341: Programming Languages

Dynamic typing

Major topic coming later: contrasting static typing (e.g., ML) with 
dynamic typing (e.g., Racket) 

For now: 
– Frustrating not to catch “little errors” like (n * x) until you 

test your function 
– But can use very flexible data structures and code without 

convincing a type checker that it makes sense 

Example:  
– A list that can contain numbers or other lists 
– Assuming lists or numbers “all the way down,” sum all the 

numbers…

18Autumn 2019



CSE341: Programming Languages

Example

19

(define (sum xs) 
  (if (null? xs) 
      0 
      (if (number? (car xs)) 
          (+ (car xs) (sum (cdr xs))) 
          (+ (sum (car xs)) (sum (cdr xs)))))) 

• No need for a fancy datatype binding, constructors, etc. 
• Works no matter how deep the lists go 
• But assumes each element is a list or a number 

– Will get a run-time error if anything else is encountered

Autumn 2019



CSE341: Programming Languages

Better style

Avoid nested if-expressions when you can use cond-expressions 
instead 

– Can think of one as sugar for the other 

General syntax: (cond  [e1a e1b]  
                  [e2a e2b]  
                   …  
                  [eNa eNb]) 

– Good style: eNa should be #t

20Autumn 2019



CSE341: Programming Languages

Example

21

(define (sum xs) 
  (cond [(null? xs) 0] 
        [(number? (car xs)) 
         (+ (car xs) (sum (cdr xs)))] 
        [#t (+ (sum (car xs)) (sum (cdr xs)))])) 

Autumn 2019



CSE341: Programming Languages

A variation

As before, we could change our spec to say instead of errors on 
non-numbers, we should just ignore them 
So this version can work for any list (or just a number) 

– Compare carefully, we did not just add a branch

22

(define (sum xs) 
  (cond [(null? xs) 0] 
        [(number? xs) xs] 
        [(list? xs) 
         (+ (sum (car xs)) (sum (cdr xs)))] 
        [#t 0])) 

Autumn 2019



CSE341: Programming Languages

What is true?

For both if and cond, test expression can evaluate to anything 
– It is not an error if the result is not #t or #f 
– (Apologies for the double-negative ☺ ) 

Semantics of if and cond: 
– “Treat anything other than #f as true” 
– (In some languages, other things are false, not in Racket) 

This feature makes no sense in a statically typed language 

Some consider using this feature poor style, but it can be 
convenient

23Autumn 2019



CSE341: Programming Languages

Local bindings

• Racket has 4 ways to define local variables 
– let 
– let* 
– letrec 
– define 

• Variety is good: They have different semantics 
– Use the one most convenient for your needs, which helps 

communicate your intent to people reading your code 
• If any will work, use let 

– Will help us better learn scope and environments 

• Like in ML, the 3 kinds of let-expressions can appear anywhere

24Autumn 2019



CSE341: Programming Languages

Let

A let expression can bind any number of local variables 
– Notice where all the parentheses are 

The expressions are all evaluated in the environment from before 
the let-expression 

– Except the body can use all the local variables of course 
– This is not how ML let-expressions work 
– Convenient for things like (let ([x y][y x]) …)

25

(define (silly-double x) 
  (let ([x (+ x 3)] 
        [y (+ x 2)]) 
     (+ x y -5))) 
        

Autumn 2019



CSE341: Programming Languages

Let*

Syntactically,  a  let* expression is a let-expression with 1 more 
character 

The expressions are evaluated in the environment produced from 
the previous bindings 

– Can repeat bindings (later ones shadow) 
– This is how ML let-expressions work

26

(define (silly-double x) 
  (let* ([x (+ x 3)] 
         [y (+ x 2)]) 
     (+ x y -8))) 
        

Autumn 2019



CSE341: Programming Languages

Letrec

Syntactically,  a  letrec expression is also the same 

The expressions are evaluated in the environment that includes all 
the bindings 

– Needed for mutual recursion  
– But expressions are still evaluated in order: accessing an 

uninitialized binding raises an error 
• Remember function bodies not evaluated until called

27

(define (silly-triple x) 
  (letrec ([y (+ x 2)] 
           [f (lambda(z) (+ z y w x))] 
           [w (+ x 7)]) 
     (f -9))) 
        

Autumn 2019



CSE341: Programming Languages

More letrec

• Letrec is ideal for recursion (including mutual recursion) 

• Do not use later bindings except inside functions 
– This example will raise an error when called

28

(define (silly-mod2 x) 
  (letrec  
   ([even? (λ(x)(if (zero? x) #t (odd? (- x 1))))] 
    [odd?  (λ(x)(if (zero? x) #f (even? (- x 1))))]) 
     (if (even? x) 0 1)))

(define (bad-letrec x) 
  (letrec ([y z] 
           [z 13]) 
     (if x y z)))

Autumn 2019



CSE341: Programming Languages

Local defines

• In certain positions, like the beginning of function bodies, you can 
put defines 
– For defining local variables, same semantics as letrec 

• Local defines is preferred Racket style, but course materials will 
avoid them to emphasize let, let*, letrec distinction 
– You can choose to use them on homework or not

29

(define (silly-mod2 x) 
  (define (even? x)(if (zero? x) #t (odd? (- x 1)))) 
  (define (odd? x) (if (zero? x) #f (even?(- x 1)))) 
  (if (even? x) 0 1))

Autumn 2019



CSE341: Programming Languages

Top-level

The bindings in a file work like local defines, i.e., letrec 
– Like ML, you can refer to earlier bindings 
– Unlike ML, you can also refer to later bindings 
– But refer to later bindings only in function bodies 

• Because bindings are evaluated in order 
• Get an error if try to use a not-yet-defined binding 

– Unlike ML, cannot define the same variable twice in module 
• Would make no sense: cannot have both in environment

30Autumn 2019



CSE341: Programming Languages

REPL

Unfortunate detail:  
– REPL works slightly differently 

• Not quite let* or letrec  
• ☹   

– Best to avoid recursive function definitions or forward references 
in REPL 

• Actually okay unless shadowing something (you may not 
know about) – then weirdness ensues 

• And calling recursive functions is fine of course

31Autumn 2019



CSE341: Programming Languages

Optional: Actually…

• Racket has a module system 
– Each file is implicitly a module 

• Not really “top-level” 
– A module can shadow bindings from other modules it uses 

• Including Racket standard library 
– So we could redefine + or any other function 

• But poor style 
• Only shadows in our module (else messes up rest of 

standard library) 

• (Optional note: Scheme is different)

32Autumn 2019



CSE341: Programming Languages

Set!

• Unlike ML, Racket really has assignment statements 
– But used only-when-really-appropriate! 

• For the x in the current environment, subsequent lookups of x 
get the result of evaluating expression e 
– Any code using this x will be affected 
– Like x = e in Java, C, Python, etc. 

• Once you have side-effects, sequences are useful:

33

(set! x e)

(begin e1 e2 … en)

Autumn 2019



CSE341: Programming Languages

Example

Example uses set! at top-level; mutating local variables is similar 

Not much new here: 
– Environment for closure determined when function is defined, 

but body is evaluated when function is called 
– Once an expression produces a value, it is irrelevant how the 

value was produced

34

(define b 3)  
(define f (lambda (x) (* 1 (+ x b))))  
(define c (+ b 4)) ; 7 
(set! b 5) 
(define z (f 4))   ; 9 
(define w c)       ; 7

Autumn 2019



CSE341: Programming Languages

Top-level

• Mutating top-level definitions is particularly problematic 
– What if any code could do set! on anything? 
– How could we defend against this? 

• A general principle: If something you need not to change might 
change, make a local copy of it.  Example: 

     Could use a different name for local copy but do not need to

35

(define b 3)  
(define f  
  (let ([b b]) 
    (lambda (x) (* 1 (+ x b)))))

Autumn 2019



CSE341: Programming Languages

But wait…

• Simple elegant language design: 
– Primitives like + and * are just predefined variables bound to 

functions 
– But maybe that means they are mutable 
– Example continued: 

– Even that won’t work if f uses other functions that use things 
that might get mutated – all functions would need to copy 
everything mutable they used

36

(define f  
  (let ([b b] 
        [+ +] 
        [* *]) 
    (lambda (x) (* 1 (+ x b)))))

Autumn 2019



CSE341: Programming Languages

No such madness

In Racket, you do not have to program like this 
– Each file is a module 
– If a module does not use set! on a top-level variable, then 

Racket makes it constant and forbids set! outside the module 
– Primitives like +, *, and cons are in a module that does not 

mutate them 

Showed you this for the concept of copying to defend against mutation 
– Easier defense: Do not allow mutation 
– Mutable top-level bindings a highly dubious idea

37Autumn 2019



CSE341: Programming Languages

The truth about cons

cons just makes a pair 
– Often called a cons cell 
– By convention and standard library, lists are nested pairs that 

eventually end with null 

Passing an improper list  to functions like length is a run-time error

38

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi") 
(define lst (cons 1 (cons #t (cons "hi" null)))) 
(define hi (cdr (cdr pr))) 
(define hi-again (car (cdr (cdr lst)))) 
(define hi-another (caddr lst)) 
(define no (list? pr)) 
(define yes (pair? pr)) 
(define of-course (and (list? lst) (pair? lst))) 

Autumn 2019



CSE341: Programming Languages

The truth about cons

So why allow improper lists? 
– Pairs are useful 
– Without static types, why distinguish (e1,e2) and e1::e2 

Style: 
– Use proper lists for collections of unknown size 
– But feel free to use cons to build a pair  

• Though structs (like records) may be better 

Built-in primitives: 
– list? returns true for proper lists, including the empty list 
– pair? returns true for things made by cons 

• All improper and proper lists except the empty list

39Autumn 2019



CSE341: Programming Languages

cons cells are immutable

What if you wanted to mutate the contents of a cons cell? 
– In Racket you cannot (major change from Scheme) 
– This is good 

• List-aliasing irrelevant 
• Implementation can make list? fast since listness is 

determined when cons cell is created

40Autumn 2019



CSE341: Programming Languages

Set! does not change list contents

This does not mutate the contents of a cons cell: 

– Like Java’s x = new Cons(42,null), not  x.car = 42

41

(define x (cons 14 null)) 
(define y x) 
(set! x (cons 42 null)) 
(define fourteen (car y))

Autumn 2019



CSE341: Programming Languages

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon), 
Racket provides them too: 

– mcons 
– mcar 
– mcdr 
– mpair? 
– set-mcar! 
– set-mcdr! 

Run-time error to use mcar on a cons cell or car on an mcons cell

42Autumn 2019


