PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 21
Dynamic Dispatch Precisely,
and Manually in Racket

Eric Mullen
Autumn 2019

Dynamic dispatch

Dynamic dispatch
— Also known as late binding or virtual methods

— Call self.m2 () in method m1 defined in class C can resolve
to a method m2 defined in a subclass of ¢

— Most unique characteristic of OOP

Need to define the semantics of method lookup as carefully as we
defined variable lookup for our PLs

Autumn 2019 CSE341: Programming Languages 2

Using self

self maps to some “current” object

« Look up instance variable @x using object bound to self

* Look up class variables @@x using object bound to self.class

* Look up methods...

Autumn 2019 CSE341: Programming Languages

Review: variable lookup

Rules for “looking things up” is a key part of PL semantics

ML: Look up variables in the appropriate environment
— Lexical scope for closures
— Field names (for records) are different: not variables

Racket: Like ML plus let, letrec

* Ruby:
— Local variables and blocks mostly like ML and Racket
— But also have instance variables, class variables, methods
(all more like record fields)
 Look up in terms of sel£, which is special

Autumn 2019 CSE341: Programming Languages

Ruby method lookup

The semantics for method calls also known as message sends
e0.m(el,..,en)
1. Evaluate e0, el, ..., en to objects obj0, objl, ..., objn
— As usual, may involve looking up self£, variables, fields, etc.
2. Letc be the class of obj0 (every object has a class)

3. Ifmis defined in c, pick that method, else recur with the superclass
of c unless C is already Object

— Ifnomis found, call method_missing instead
« Definition of method_missing in Object raises an error
4. Evaluate body of method pi:ked:
— With formal arguments bound to ob3j1, ..., objn
— With self bound to obj0 -- this implements dynamic dispatch!

Note: Step (3) complicated by mixins: will revise definition later

Autumn 2019 CSE341: Programming Languages 5

Punch-line again

e0.m(el,..,en)

To implement dynamic dispatch, evaluate the method body with
self mapping to the receiver (result of e0)

« That way, any self calls in body of m use the receiver's class,
— Not necessarily the class that defined m

« This much is the same in Ruby, Java, C#, Smalltalk, etc.

Autumn 2019 CSE341: Programming Languages

Comments on dynamic dispatch

This is why distFromOrigin2 worked in PolarPoint

More complicated than the rules for closures
— Have to treat self specially

— May seem simpler only if you learned it first
— Complicated does not necessarily mean inferior or superior

Autumn 2019 CSE341: Programming Languages

Static overloading

In Java/C#/C++, method-lookup rules are similar, but more
complicated because > 1 methods in a class can have same name

— Java/C/C++: Overriding only when number/types of
arguments the same

— Ruby: same-method-name always overriding

Pick the “best one” using the static (!) types of the arguments
— Complicated rules for “best”
— Type-checking error if there is no “best”
Relies fundamentally on type-checking rules
— Ruby has none

Autumn 2019 CSE341: Programming Languages 8

A simple example, part 1
In ML (and other languages), closures are closed

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

So we can shadow odd, but any call to the closure bound to odd

above will “do what we expect”
— Does not matter if we shadow even or not

(* does not change odd - too bad; this would
improve it *)
fun even x = (x mod 2)=0

(* does not change odd - good thing; this would
break it *)
fun even x = false

Autumn 2019 CSE341: Programming Languages 9

A simple example, part 2

In Ruby (and other OOP languages), subclasses can change the
behavior of methods they do not override

class A
def even x
if x==0 then true else odd (x-1) end
end
def odd x
if x==0 then false else even (x-1) end
end
end
class B < A # improves odd in B objects
def even x ; x ¥ 2 == 0 end
end
class C < A # breaks odd in C objects
def even x ; false end
end

Autumn 2019 CSE341: Programming Languages

The OORP trade-off

Any method that makes calls to overridable methods can have its
behavior changed in subclasses even if it is not overridden

— Maybe on purpose, maybe by mistake

— Observable behavior includes calls-to-overridable methods

« So harder to reason about “the code you're looking at”
— Can avoid by disallowing overriding
« “private” or “final” methods

So easier for subclasses to affect behavior without copying code
— Provided method in superclass is not modified later

Autumn 2019 CSE341: Programming Languages il

Manual dynamic dispatch

Now: Write Racket code with little more than pairs and functions that
acts like objects with dynamic dispatch

Why do this?
— (Racket actually has classes and objects available)

« Demonstrates how one language's semantics is an idiom in
another language

« Understand dynamic dispatch better by coding it up
— Roughly how an interpreter/compiler might

Analogy: Earlier optional material encoding higher-order functions
using objects and explicit environments

Autumn 2019 CSE341: Programming Languages 12

Our approach

Many ways to do it; our code does this:
— An “object” has a list of field pairs and a list of method pairs
(struct obj (fields methods))
— Field-list element example:
(mcons 'x 17)
— Method-list element example:
(cons 'get-x (lambda (self args) ..))
Notes:
« Lists sufficient but not efficient
* Not class-based: object has a list of methods, not a class that
has a list of methods [could do it that way instead]
« Key trick is lambdas taking an extra sel£ argument
— All “regular” arguments put in a list args for simplicity

Autumn 2019 CSE341: Programming Languages 13

A point object bound to x

ields/methods

Msv,lf args)... Mself args)... A(self args)...

,
qet x | set- x| | |'distToorigin | 7 |
i ? fcar cdr

car cdr car cdr car cdr
Autumn 2019 (CSE341: Programming Languages 14

Key helper functions

Now define plain Racket functions to get field, set field, call method

(define (assoc-m v xs)
..) ; assoc for list of mutable pairs
(define (get obj £1ld)
(let ([pr (assoc-m fld (obj-fields obj))1))
(if pr (medr pr) (error .))))
(define (set obj fld v)
(let ([pr (assoc-m fld (obj-fields obj))1))
(if pr (set-mecdr! pr v) (error .))))
(define (send obj msg . args)
(let ([pr (assoc msg (obj-methods obj))]))
(if pr ((cdr pr) obj args) (error .))))

Autumn 2019 CSE341: Programming Languages 15

(send x 'distToOrigin)

um Evaluate body of

car moar mcar mcr Aself args)...
' () with self bound to
C' entire object —>

(and args bound to ' ())

ields/mefhods

Mself args)... Aself args)... Mself args)...

] i i

/| 'get-x | | 'set—xl T | "distToOrigin | U

car car car cdr car cdr
" [O]

car _ cdr

Autumn 2019 CSE341: Programming Languages 16

Constructing points

« Plain-old Racket function can take initial field values and build a
point object
— Use functions get, set, and send on result and in “methods”
— Callto self: (send self 'm ..)
— Method arguments in args list

(define (make-point _x _y)
(obj
(list (mcons 'x _x)
(mcons 'y _y))
(list (cons 'get-x (A(self args) (get self 'x)))
(cons 'get-y (A(self args) (get self 'y)))
(cons 'set-x (A(self args) (..)))
(cons 'set-y (A(self args) (..)))
(cons 'dlst'l‘oor:n.g:.n (M (self args) (..))))))

Autumn 2019 CSE341: Programming Languages 17

“Subclassing”

Can use make-point to write make-color-point or make-
polar-point functions (see code)

Build a new object using fields and methods from “super”
“constructor”
— Add new or overriding methods to the beginning of the list
« send will find the first matching method
— Since send passes the entire receiver for sel£, dynamic
dispatch works as desired

Autumn 2019 CSE341: Programming Languages 18

Why not ML?

We were wise not to try this in ML!

ML's type system does not have subtyping for declaring a polar-
point type that “is also a” point type
— Workarounds possible (e.g., one type for all objects)
— Still no good type for those self arguments to functions
« Need quite sophisticated type systems to support
dynamic dispatch if it is not built into the language

In fairness, languages with subtyping but not generics make it
analogously awkward to write generic code

Autumn 2019 CSE341: Programming Languages 19

