
CSE341: Programming Languages 
 

Lecture 3  
Local Bindings; 

 Options; 
 Benefits of No Mutation 

Eric Mullen
Autumn 2019

CSE341: Programming Languages

Review
Huge progress already on the core pieces of ML:
• Types: int bool unit t1*…*tn t list t1*…*tn->t

– Types “nest” (each t above can be itself a compound type)
• Variables, environments, and basic expressions
• Functions

– Build: fun x0 (x1:t1, …, xn:tn) = e
– Use: e0 (e1, …, en)

• Tuples
– Build: (e1, …, en)
– Use: #1 e, #2 e, …

• Lists
– Build: [] e1::e2
– Use: null e hd e tl e

Autumn 2019 !2

CSE341: Programming Languages

Today

• The big thing we need: local bindings
– For style and convenience
– A big but natural idea: nested function bindings
– For efficiency (not “just a little faster”)

• One last feature for Problem 11 of Homework 1: options

• Why not having mutation (assignment statements) is a valuable
language feature
– No need for you to keep track of sharing/aliasing,

which Java programmers must obsess about

!3Autumn 2019

CSE341: Programming Languages

Let-expressions

3 questions:

• Syntax:
– Each bi is any binding and e is any expression

• Type-checking: Type-check each bi and e in a static
environment that includes the previous bindings.

 Type of whole let-expression is the type of e.

• Evaluation: Evaluate each bi and e in a dynamic environment
that includes the previous bindings.

 Result of whole let-expression is result of evaluating e.

!4

 let b1 b2 … bn in e end

Autumn 2019

CSE341: Programming Languages

It is an expression

A let-expression is just an expression, so we can use it anywhere
an expression can go

!5Autumn 2019

CSE341: Programming Languages

Silly examples

silly2 is poor style but shows let-expressions are expressions
– Can also use them in function-call arguments, if branches, etc.
– Also notice shadowing

!6

fun silly1 (z : int) =
 let val x = if z > 0 then z else 34
 val y = x+z+9
 in
 if x > y then x*2 else y*y
 end

fun silly2 () =
 let val x = 1
 in
 (let val x = 2 in x+1 end) +
 (let val y = x+2 in y+1 end)
 end

Autumn 2019

CSE341: Programming Languages

What’s new

• What’s new is scope: where a binding is in the environment
– In later bindings and body of the let-expression

• (Unless a later or nested binding shadows it)
– Only in later bindings and body of the let-expression

• Nothing else is new:
– Can put any binding we want, even function bindings
– Type-check and evaluate just like at “top-level”

!7Autumn 2019

CSE341: Programming Languages

Any binding

According to our rules for let-expressions, we can define functions
inside any let-expression

This is a natural idea, and often good style

!8

 let b1 b2 … bn in e end

Autumn 2019

CSE341: Programming Languages

(Inferior) Example

• This shows how to use a local function binding, but:
– Better version on next slide
– count might be useful elsewhere

!9

fun countup_from1 (x : int) =
 let fun count (from : int, to : int) =
 if from = to
 then to :: []
 else from :: count(from+1,to)
 in
 count (1,x)
 end

Autumn 2019

CSE341: Programming Languages

Better:

• Functions can use bindings in the environment where they are
defined:
– Bindings from “outer” environments

• Such as parameters to the outer function
– Earlier bindings in the let-expression

• Unnecessary parameters are usually bad style
– Like to in previous example

!10

fun countup_from1_better (x : int) =
 let fun count (from : int) =
 if from = x
 then x :: []
 else from :: count(from+1)
 in
 count 1
 end

Autumn 2019

CSE341: Programming Languages

Nested functions: style

• Good style to define helper functions inside the functions they
help if they are:
– Unlikely to be useful elsewhere
– Likely to be misused if available elsewhere
– Likely to be changed or removed later

• A fundamental trade-off in code design: reusing code saves effort
and avoids bugs, but makes the reused code harder to change
later

!11Autumn 2019

CSE341: Programming Languages

Avoid repeated recursion
Consider this code and the recursive calls it makes

– Don’t worry about calls to null, hd, and tl because they do
a small constant amount of work

!12

fun bad_max (xs : int list) =
 if null xs
 then 0 (* horrible style; fix later *)
 else if null (tl xs)
 then hd xs
 else if hd xs > bad_max (tl xs)
 then hd xs
 else bad_max (tl xs)

let x = bad_max [50,49,…,1]
let y = bad_max [1,2,…,50]

Autumn 2019

CSE341: Programming Languages

Fast vs. unusable

!13

bm [50,…]

if hd xs > bad_max (tl xs)
then hd xs
else bad_max (tl xs)

bm [49,…] bm [48,…] bm [1]

bm [1,…] bm [2,…] bm [3,…] bm [50]

…

bm [50]

250
timesbm [2,…]

bm [3,…]

bm [3,…]

bm [3,…]

Autumn 2019

CSE341: Programming Languages

Math never lies

Suppose one bad_max call’s if-then-else logic and calls to hd,

null, tl take 10-7 seconds
– Then bad_max [50,49,…,1] takes 50 x 10-7 seconds
– And bad_max [1,2,…,50] takes 1.12 x 108 seconds

• (over 3.5 years)
• bad_max [1,2,…,55]takes over 1 century
• Buying a faster computer won’t help much ☺

The key is not to do repeated work that might do repeated work that
might do…

– Saving recursive results in local bindings is essential…

!14Autumn 2019

CSE341: Programming Languages

Efficient max

!15

fun good_max (xs : int list) =
 if null xs
 then 0 (* horrible style; fix later *)
 else if null (tl xs)
 then hd xs
 else
 let val tl_ans = good_max(tl xs)
 in
 if hd xs > tl_ans
 then hd xs
 else tl_ans
 end

Autumn 2019

CSE341: Programming Languages

Fast vs. fast

!16

gm [50,…]

let val tl_ans = good_max(tl xs)
in
 if hd xs > tl_ans
 then hd xs
 else tl_ans
end

gm [49,…] gm [48,…] gm [1]

gm [1,…] gm [2,…] gm [3,…] gm [50]

Autumn 2019

CSE341: Programming Languages

Options

• t option is a type for any type t
– (much like t list, but a different type, not a list)

Building:
• NONE has type 'a option (much like [] has type 'a list)
• SOME e has type t option if e has type t (much like e::[])

Accessing:
• isSome has type 'a option -> bool
• valOf has type 'a option -> 'a (exception if given NONE)

!17Autumn 2019

CSE341: Programming Languages

Example

!18

fun better_max (xs : int list) =
 if null xs
 then NONE
 else
 let val tl_ans = better_max(tl xs)
 in
 if isSome tl_ans
 andalso valOf tl_ans > hd xs
 then tl_ans
 else SOME (hd xs)
 end

val better_max = fn : int list -> int option

• Nothing wrong with this, but as a matter of style might prefer not
to do so much useless “valOf” in the recursion

Autumn 2019

CSE341: Programming Languages

Example variation

!19

fun better_max2 (xs : int list) =
 if null xs
 then NONE
 else let (* ok to assume xs nonempty b/c local *)
 fun max_nonempty (xs : int list) =
 if null (tl xs)
 then hd xs
 else
 let val tl_ans = max_nonempty(tl xs)
 in
 if hd xs > tl_ans
 then hd xs
 else tl_ans
 end
 in
 SOME (max_nonempty xs)
 end

Autumn 2019

CSE341: Programming Languages

Cannot tell if you copy

In ML, these two implementations of sort_pair are indistinguishable
– But only because tuples are immutable
– The first is better style: simpler and avoids making a new pair in

the then-branch
– In languages with mutable compound data, these are different!

!20

fun sort_pair (pr : int * int) =
 if #1 pr < #2 pr
 then pr
 else (#2 pr, #1 pr)

fun sort_pair (pr : int * int) =
 if #1 pr < #2 pr
 then (#1 pr, #2 pr)
 else (#2 pr, #1 pr)

Autumn 2019

CSE341: Programming Languages

Suppose we had mutation…

• What is z?
– Would depend on how we implemented sort_pair

• Would have to decide carefully and document sort_pair
– But without mutation, we can implement “either way”

• No code can ever distinguish aliasing vs. identical copies
• No need to think about aliasing: focus on other things
• Can use aliasing, which saves space, without danger

!21

val x = (3,4)
val y = sort_pair x

somehow mutate #1 x to hold 5

val z = #1 y

x 3 4

y

3 4

?

?

Autumn 2019

CSE341: Programming Languages

An even better example

!22

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)
val x = [2,4]
val y = [5,3,0]
val z = append(x,y)

x

y

z

2 4

5 3 0

2 4

x

y

z

2 4

5 3 0

2 4 5 3 0

or

(can’t tell,
but it’s the
first one)

Autumn 2019

CSE341: Programming Languages

ML vs. Imperative Languages

• In ML, we create aliases all the time without thinking about it
because it is impossible to tell where there is aliasing
– Example: tl is constant time; does not copy rest of the list
– So don’t worry and focus on your algorithm

• In languages with mutable data (e.g., Java), programmers are
obsessed with aliasing and object identity
– They have to be (!) so that subsequent assignments affect

the right parts of the program
– Often crucial to make copies in just the right places

• Consider a Java example…

!23Autumn 2019

CSE341: Programming Languages

Java security nightmare (bad code)

!24

class ProtectedResource {
 private Resource theResource = ...;
 private String[] allowedUsers = ...;
 public String[] getAllowedUsers() {
 return allowedUsers;
 }
 public String currentUser() { ... }
 public void useTheResource() {
 for(int i=0; i < allowedUsers.length; i++) {
 if(currentUser().equals(allowedUsers[i])) {
 ... // access allowed: use it
 return;
 }
 }
 throw new IllegalAccessException();
 }
}

Autumn 2019

CSE341: Programming Languages

Have to make copies

!25

 public String[] getAllowedUsers() {
 … return a copy of allowedUsers …
 }

The fix:

The problem:

p.getAllowedUsers()[0] = p.currentUser();
p.useTheResource();

Reference (alias) vs. copy doesn’t matter if code is immutable!

Autumn 2019

