

•

•
•
•

http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html

•
•

datatype (‘a, ‘b) tree =
 Leaf of ‘a
| Node of ‘b * (‘a, ‘b) tree * (‘a, ‘b) tree

fn pattern => expression

•
•
•
let fun name pattern = expression in name end

•

val name = fn pattern => expression;

fun name pattern = expression;

•
• fun

val

(fn xs => tl xs) tl

(fn xs => tl xs) tl

•
• tl

•
(if ex then true else false) ex

•
•

•

● map : ('a -> 'b) * 'a list -> 'b list

What does the type tell us?
● What are the arguments?
● What is the return type?
● What could be a hypothesis for what this function is supposed to do?

● map applies a function to every element of a list and return a list of the
resulting values.
– map (fn x => x*3, [1,2,3]) === [3,6,9]

● filter

– filter (fn x => x>2, [~5,3,2,5]) === [3,5]

What could be the type of this function?
● What are the arguments?
● What is the return type?
● What could be a hypothesis for what this function is supposed to do?

● filter : ('a -> bool) * 'a list -> 'a list

• fold : ('a * 'b -> 'a) * 'a * 'b list -> 'a
–

– fold((fn (a,b) => a + b), 0, [1,2,3]) === 6

