
CSE 341
Section 7

Fall 2019

Adapted from slides by Daniel Snitkovskiy, Nicholas Shahan, Dan Grossman, and Tam Dang

Outline
• Interpreting LBI (Language Being Implemented)

• Assume Correct Syntax

• Check for Correct Semantics

• Evaluating the AST

• LBI “Macros”

• Eval, Quote, and Quasiquote

• Variable Number of Arguments

• Apply

2

• We are skipping the parsing phase ← Do Not Implement
- Can be skipped because AST (“Abstract Syntax Tree”) nodes

represented as Racket structs.

• LBI vs. Metalanguage:
- MUPL is the LBI.

- Racket is the “metalanguage”.

Building an LBI Interpreter

3

A larger language example...
(struct const (int) #:transparent)
(struct negate (e1)#:transparent)
(struct add (e1 e2) #:transparent)
(struct bool (b)#:transparent)
(struct multiply (e1 e2)#:transparent)
(struct eq-num (e1 e2)#:transparent)
(struct if-then-else (e1 e2 e3)#:transparent)

LBI → (add (const 1) (const 1))
Metalanguage → Racket structs/operations on structs/the above code.

Correct Syntax Examples

5

(struct const (int) #:transparent)
(struct add (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3)#:transparent)

(const 34)
(add (const 34) (const 30))
(if-then-else (bool #t) (const 10) (const 20)

…we can interpret these LBI programs:

Using these Racket structs…

Incorrect Syntax Examples

6

(struct const (int) #:transparent)
(struct add (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3)#:transparent)

(const “dan then dog”)
(add 5 4)
(if-then-else (bool ‘(1 2)) (const 5) (bool #f))

…we can assume we won’t see LBI programs like:

While using these Racket structs…

Illegal input ASTs may crash the interpreter - this is OK

Racket vs. LBI

7

(struct const (int) #:transparent)
(struct add (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3)#:transparent)

(const “dan then dog”)
(add 5 4)
(if-then-else (bool ‘(1 2)) (const 5) (bool #f))

Structs in Racket, when defined to take an argument, can
take any Racket value:

But in LBI, we restrict const to take only an integer value,
add to take two LBI expressions, and so on…

Illegal input ASTs may crash the interpreter - this is OK

LBI Syntax

8

● If n is a Racket integer, then (const n) is an LBI
expression.

● If e1 and e2 are LBI expressions, then (add e1 e2) is
an LBI expression.

● If e1, e2, and e3 are LBI expressions, then
(if-then-else e1 e2 e3) is an LBI expression.

● ……

LBI Semantics

9

● All values evaluate to themselves. This includes bool
and const.

● An add evaluates its subexpressions and, assuming
they both produce integers, produces the integer that
is their sum.

● An if-then-else evaluates its first expression to a
value v1. If it is a boolean, then if it is #t, then
evaluates its second subexpression, else it evaluates its
third subexpression.

● …...

Check for Correct Semantics

1
0

(struct const (int) #:transparent)
(struct add (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3)#:transparent)

(add (const 1) (bool #t))
(if-then-else (const 5) (const 5) (bool #f))

What if the program is a legal AST, but evaluation of it tries
to use the wrong kind of value?

This is invalid LBI syntax that we need to check for...

• You should detect this and give an error message that is not in
terms of the interpreter implementation

Evaluating the AST

•eval-exp should return a LBI value

• LBI values all evaluate to themselves

•Otherwise, we haven’t interpreted far enough

1
1

(const 7) ; evaluates to (const 7)
(add (const 3) (const 4)) ; evaluates to (const 7)

Evaluating the AST

● What’s wrong with this implementation of eval?
(other than it being called “eval-exp-wrong”...)

Evaluating the AST

● It doesn’t recursively check for semantic
correctness!
○ Let’s see a better version of this...

Macros Review
• Extend language syntax (allow new constructs)

• Written in terms of existing syntax

• Expanded before language is actually interpreted or
compiled

14

LBI “Macros”

• Interpreting LBI using Racket as the metalanguage

• LBI is made up of Racket structs

• In Racket, these are just data types

•Why not write a Racket function that returns LBI
ASTs?

15

LBI “Macros”

16

(++ (++ (const 7)))

(define (++ exp) (add (const 1) exp))
If our LBI Macro is a Racket function

Expands to
(add (const 1) (add (const 1) (const 7)))

Then the LBI code

LBI “Macros”

17

(andalso (bool #t) (bool #t))

(define (andalso e1 e2) (if-then-else e1 e2 (bool #f)))

If our LBI Macro is a Racket function

Expands to
(if-then-else (bool #t) (bool #t) (bool #f))

Then the LBI code

quote
• Syntactically, Racket statements can be thought of

as lists of tokens

•(+ 3 4) is a “plus sign”, a “3”, and a “4”

•quote-ing a parenthesized expression produces a
list of tokens

18

quote Examples

19

(+ 3 4) ; 7

; '(+ 3 4)
(quote (+ 3 4))
‘(+ 3 4)

; '(+ 3 #t)
(quote (+ 3 #t))
`(+ 3 #t)

quasiquote
• Inserts evaluated tokens into a quote

•Convenient for generating dynamic token lists

•Use unquote to escape a quasiquote back to
evaluated Racket code

•A quasiquote and quote are equivalent unless
we use an unquote operation

20

Self Interpretation

•Many languages provide an eval function or
something similar

•Performs interpretation or compilation at runtime
• Needs full language implementation during runtime

• It's useful, but there's usually a better way

•Makes analysis, debugging difficult

21

eval
•Racket's eval operates on lists of tokens

• Like those generated from quote and
quasiquote
•Treat the input data as a program and evaluate it

22

Variable Number of Arguments

• Some functions (like +) can take a variable number
of arguments

•There is syntax that lets you define your own

23

(define fn-any
 (lambda xs ; any number of args
 (print xs)))
(define fn-1-or-more
 (lambda (a . xs) ; at least 1 arg
 (begin (print a) (print xs))))
(define fn-2-or-more
 (lambda (a b . xs) ; at least 2 args
 (begin (print a) (print a) (print xs))))

apply
•Applies a list of values as the arguments to a

function in order by position

24

(define fn-any
 (lambda xs ; any number of args
 (print xs)))
(apply fn-any (list 1 2 3 4)); '(1 2 3 4)

(apply + (list 1 2 3 4)) ; 10
(apply max (list 1 2 3 4)) ; 4

