
CSE341: Programming Languages

Interlude: Course Motivation

Dan Grossman
Spring 2019

Course Motivation
(Did you think I forgot?)

• Why learn the fundamental concepts that appear in all (most?)
languages?

• Why use languages quite different from C, C++, Java, Python?

• Why focus on functional programming?

• Why use ML, Racket, and Ruby in particular?

• Not: Language X is better than Language Y

[You won’t be tested on this stuff]

Spring 2019 2CSE341: Programming Languages

Summary
• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software
– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades
– Ideas have been absorbed by the mainstream, but very slowly
– First-class functions and avoiding mutation increasingly essential
– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Spring 2019 3CSE341: Programming Languages

What is the best kind of car?

What is the best kind of shoes?

Spring 2019 4CSE341: Programming Languages

Cars / Shoes

Cars are used for rather different things:
– Winning a Formula 1 race
– Taking kids to soccer practice
– Off-roading
– Hauling a mattress
– Getting the wind in your hair
– Staying dry in the rain

Shoes:
– Playing basketball
– Going to a formal
– Going to the beach

Spring 2019 5CSE341: Programming Languages

More on cars

• A good mechanic might have a specialty, but also understands
how “cars” (not a particular make/model) work
– The upholstery color isn’t essential (syntax)

• A good mechanical engineer really knows how cars work, how
to get the most out of them, and how to design better ones
– I don’t have a favorite kind of car or a favorite PL

• To learn how car pieces interact, it may make sense to start with
a classic design rather than the latest model
– A popular car may not be best
– May especially not be best for learning how cars work

Spring 2019 6CSE341: Programming Languages

Why semantics and idioms

This course focuses as much as it can on semantics and idioms

• Correct reasoning about programs, interfaces, and compilers
requires a precise knowledge of semantics
– Not “I feel that conditional expressions might work like this”
– Not “I like curly braces more than parentheses”
– Much of software development is designing precise

interfaces; what a PL means is a really good example

• Idioms make you a better programmer
– Best to see in multiple settings, including where they shine
– See Java in a clearer light even if I never show you Java

Spring 2019 7CSE341: Programming Languages

Hamlet

The play Hamlet:
– Is a beautiful work of art
– Teaches deep, eternal truths
– Is the source of some well-known sayings
– Makes you a better person

Continues to be studied centuries later even though:
– The syntax is really annoying to many
– There are more popular movies with some of the same lessons
– Reading Hamlet will not get you a summer internship

Spring 2019 8CSE341: Programming Languages

All cars are the same

• To make it easier to rent cars, it is great that they all have
steering wheels, brakes, windows, headlights, etc.
– Yet it is still uncomfortable to learn a new one
– Can you be a great driver if you only ever drive one car?

• And maybe PLs are more like cars, trucks, boats, and bikes

• So are all PLs really the same…

Spring 2019 9CSE341: Programming Languages

Are all languages the same?

Yes:
– Any input-output behavior implementable in language X is

implementable in language Y [Church-Turing thesis]
– Java, ML, and a language with one loop and three infinitely-

large integers are “the same”
Yes:

– Same fundamentals reappear: variables, abstraction, one-of
types, recursive definitions, …

No:
– The human condition vs. different cultures

(travel to learn more about home)
– The primitive/default in one language is awkward in another
– Beware “the Turing tarpit”

Spring 2019 10CSE341: Programming Languages

Functional Programming

Why spend 60-80% of course using functional languages:
– Mutation is discouraged
– Higher-order functions are very convenient
– One-of types via constructs like datatypes

Because:
1. These features are invaluable for correct, elegant, efficient

software (great way to think about computation)
2. Functional languages have always been ahead of their time
3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) …

Spring 2019 11CSE341: Programming Languages

Ahead of their time

All these were dismissed as “beautiful, worthless, slow things PL
professors make you learn”

• Garbage collection (Java didn’t exist in 1995, PL courses did)
• Generics (List<T> in Java, C#), much more like SML than C++
• XML for universal data representation (like Racket/Scheme/LISP/…)
• Higher-order functions (Ruby, Javascript, C#, now Java, …)
• Type inference (C#, Scala, …)
• Recursion (a big fight in 1960 about this – I’m told)
• …

Spring 2019 12CSE341: Programming Languages

The future may resemble the past

Somehow nobody notices we are right… 20 years later

• “To conquer” versus “to assimilate”

• Societal progress takes time and muddles “taking credit”

• Maybe pattern-matching, currying, hygienic macros, etc. will be next

Spring 2019 13CSE341: Programming Languages

Recent-ish Surge, Part 1

Other popular functional PLs (alphabetized, pardon omissions)
• Clojure http://clojure.org
• Erlang http://www.erlang.org
• F# http://tryfsharp.org
• Haskell http://www.haskell.org
• OCaml http://ocaml.org
• Scala http://www.scala-lang.org

Some “industry users” lists (surely more exist):
• http://www.haskell.org/haskellwiki/Haskell_in_industry
• http://ocaml.org/companies.html
• In general, see http://cufp.org

Spring 2019 14CSE341: Programming Languages

Recent-ish Surge, Part 2

Popular adoption of concepts:
• C#, LINQ (closures, type inference, …)
• Java 8 (closures)
• MapReduce / Hadoop

– Avoiding side-effects essential for fault-tolerance here
• Scala libraries (e.g., Akka, …)
• …

Spring 2019 15CSE341: Programming Languages

Why a surge?

My best guesses:

• Concise, elegant, productive programming

• JavaScript, Python, Ruby helped break the Java/C/C++
hegemony

• Avoiding mutation is the easiest way to make concurrent and
parallel programming easier
– In general, to handle sharing in complex systems

• Sure, functional programming is still a small niche, but there is
so much software in the world today even niches have room

Spring 2019 16CSE341: Programming Languages

The languages together
SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed
functional Racket SML
object-oriented Ruby Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:
Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking

[and much more]

Spring 2019 17CSE341: Programming Languages

But why not…

Instead of SML, could use similar languages easy to learn after:

– OCaml: yes indeed but would have to port all my materials
• And a few small things (e.g., second-class constructors)

– F#: yes and very cool, but needs a .Net platform
• And a few more small things (e.g., second-class

constructors, less elegant signature-matching)

– Haskell: more popular, cooler types, but lazy semantics and
type classes from day 1

Admittedly, SML and its implementations are showing their age
(e.g., andalso and less tool support), but it still makes for a fine
foundation in statically typed, eager functional programming
Spring 2019 18CSE341: Programming Languages

But why not…

Instead of Racket, could use similar languages easy to learn after:

– Scheme, Lisp, Clojure, …

Racket has a combination of:
– A modern feel and active evolution
– “Better” macros, modules, structs, contracts, …
– A large user base and community (not just for education)
– An IDE tailored to education

Could easily define our own language in the Racket system
– Would rather use a good and vetted design

Spring 2019 19CSE341: Programming Languages

But why not…

Instead of Ruby, could use another language:

• Python, Perl, JavaScript are also dynamically typed, but are not
as “fully” OOP, which is what I want to focus on
– Python also does not have (full) closures
– JavaScript also does not have classes but is OOP

• Smalltalk serves my OOP needs
– But implementations merge language/environment
– Less modern syntax, user base, etc.

Spring 2019 20CSE341: Programming Languages

Is this real programming?

• The way we use ML/Racket/Ruby can make them seem almost
“silly” precisely because lecture and homework focus on
interesting language constructs

• “Real” programming needs file I/O, string operations, floating-
point, graphics, project managers, testing frameworks, threads,
build systems, …
– Many elegant languages have all that and more

• Including Racket and Ruby
– If we used Java the same way, Java would seem “silly” too

Spring 2019 21CSE341: Programming Languages

A note on reality

Reasonable questions when deciding to use/learn a language:
• What libraries are available for reuse?
• What tools are available?
• What can get me a job?
• What does my boss tell me to do?
• What is the de facto industry standard?
• What do I already know?

Our course by design does not deal with these questions
– You have the rest of your life for that
– And technology leaders affect the answers

Spring 2019 22CSE341: Programming Languages

	CSE341: Programming Languages��Interlude: Course Motivation�
	Slide Number 2
	Summary
	Slide Number 4
	Cars / Shoes
	More on cars
	Why semantics and idioms
	Hamlet
	All cars are the same
	Are all languages the same?
	Functional Programming
	Ahead of their time
	The future may resemble the past
	Recent-ish Surge, Part 1
	Recent-ish Surge, Part 2
	Why a surge?
	The languages together
	But why not…
	But why not…
	But why not…
	Is this real programming?
	A note on reality

