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Course Motivation
(Did you think I forgot? )

• Why learn the fundamental concepts that appear in all (most?) 
languages?

• Why use languages quite different from C, C++, Java, Python?

• Why focus on functional programming?

• Why use ML, Racket, and Ruby in particular?

• Not: Language X is better than Language Y

[You won’t be tested on this stuff]
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Summary
• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software
– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades
– Ideas have been absorbed by the mainstream, but very slowly
– First-class functions and avoiding mutation increasingly essential
– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was 
chosen for a reason and for how they complement each other
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What is the best kind of car?

What is the best kind of shoes?
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Cars / Shoes

Cars are used for rather different things:
– Winning a Formula 1 race
– Taking kids to soccer practice
– Off-roading
– Hauling a mattress
– Getting the wind in your hair
– Staying dry in the rain

Shoes:
– Playing basketball
– Going to a formal
– Going to the beach
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More on cars

• A good mechanic might have a specialty, but also understands 
how “cars” (not a particular make/model) work
– The upholstery color isn’t essential (syntax)

• A good mechanical engineer really knows how cars work, how 
to get the most out of them, and how to design better ones
– I don’t have a favorite kind of car or a favorite PL

• To learn how car pieces interact, it may make sense to start with 
a classic design rather than the latest model
– A popular car may not be best
– May especially not be best for learning how cars work

Spring 2019 6CSE341: Programming Languages



Why semantics and idioms

This course focuses as much as it can on semantics and idioms

• Correct reasoning about programs, interfaces, and compilers 
requires a precise knowledge of semantics
– Not “I feel that conditional expressions might work like this”
– Not “I like curly braces more than parentheses”
– Much of software development is designing precise 

interfaces; what a PL means is a really good example

• Idioms make you a better programmer
– Best to see in multiple settings, including where they shine
– See Java in a clearer light even if I never show you Java
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Hamlet

The play Hamlet:
– Is a beautiful work of art
– Teaches deep, eternal truths
– Is the source of some well-known sayings
– Makes you a better person

Continues to be studied centuries later even though:
– The syntax is really annoying to many
– There are more popular movies with some of the same lessons
– Reading Hamlet will not get you a summer internship
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All cars are the same

• To make it easier to rent cars, it is great that they all have 
steering wheels, brakes, windows, headlights, etc.
– Yet it is still uncomfortable to learn a new one
– Can you be a great driver if you only ever drive one car?

• And maybe PLs are more like cars, trucks, boats, and bikes

• So are all PLs really the same…
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Are all languages the same?

Yes:
– Any input-output behavior implementable in language X is 

implementable in language Y [Church-Turing thesis]
– Java, ML, and a language with one loop and three infinitely-

large integers are “the same”
Yes: 

– Same fundamentals reappear: variables, abstraction, one-of 
types, recursive definitions, …

No:
– The human condition vs. different cultures 

(travel to learn more about home)
– The primitive/default in one language is awkward in another
– Beware “the Turing tarpit”
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Functional Programming

Why spend 60-80% of course using functional languages:
– Mutation is discouraged
– Higher-order functions are very convenient
– One-of types via constructs like datatypes

Because:
1. These features are invaluable for correct, elegant, efficient 

software (great way to think about computation)
2. Functional languages have always been ahead of their time
3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) …
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Ahead of their time

All these were dismissed as “beautiful, worthless, slow things PL 
professors make you learn”

• Garbage collection (Java didn’t exist in 1995, PL courses did)
• Generics (List<T> in Java, C#), much more like SML than C++
• XML for universal data representation (like Racket/Scheme/LISP/…)
• Higher-order functions (Ruby, Javascript, C#, now Java, …)
• Type inference (C#, Scala, …)
• Recursion (a big fight in 1960 about this – I’m told )
• …
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The future may resemble the past

Somehow nobody notices we are right… 20 years later

• “To conquer” versus “to assimilate”

• Societal progress takes time and muddles “taking credit”

• Maybe pattern-matching, currying, hygienic macros, etc. will be next
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Recent-ish Surge, Part 1

Other popular functional PLs (alphabetized, pardon omissions)
• Clojure http://clojure.org
• Erlang http://www.erlang.org
• F# http://tryfsharp.org
• Haskell http://www.haskell.org
• OCaml http://ocaml.org
• Scala http://www.scala-lang.org

Some “industry users” lists (surely more exist):
• http://www.haskell.org/haskellwiki/Haskell_in_industry
• http://ocaml.org/companies.html
• In general, see http://cufp.org
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Recent-ish Surge, Part 2

Popular adoption of concepts:
• C#, LINQ (closures, type inference, …)
• Java 8 (closures)
• MapReduce / Hadoop

– Avoiding side-effects essential for fault-tolerance here
• Scala libraries (e.g., Akka, …)
• …
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Why a surge?

My best guesses:

• Concise, elegant, productive programming

• JavaScript, Python, Ruby helped break the Java/C/C++ 
hegemony

• Avoiding mutation is the easiest way to make concurrent and 
parallel programming easier
– In general, to handle sharing in complex systems

• Sure, functional programming is still a small niche, but there is 
so much software in the world today even niches have room
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The languages together
SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed
functional Racket                        SML
object-oriented                Ruby                        Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:
Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking

[and much more]
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But why not…

Instead of SML, could use similar languages easy to learn after:

– OCaml: yes indeed but would have to port all my materials 
• And a few small things (e.g., second-class constructors)

– F#: yes and very cool, but needs a .Net platform
• And a few more small things (e.g., second-class 

constructors, less elegant signature-matching)

– Haskell: more popular, cooler types, but lazy semantics and 
type classes from day 1

Admittedly, SML and its implementations are showing their age 
(e.g., andalso and less tool support), but it still makes for a fine 
foundation in statically typed, eager functional programming
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But why not…

Instead of Racket, could use similar languages easy to learn after:

– Scheme, Lisp, Clojure, …

Racket has a combination of:
– A modern feel and active evolution
– “Better” macros, modules, structs, contracts, …
– A large user base and community (not just for education)
– An IDE tailored to education

Could easily define our own language in the Racket system
– Would rather use a good and vetted design
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But why not…

Instead of Ruby, could use another language: 

• Python, Perl, JavaScript are also dynamically typed, but are not 
as “fully” OOP, which is what I want to focus on
– Python also does not have (full) closures
– JavaScript also does not have classes but is OOP

• Smalltalk serves my OOP needs
– But implementations merge language/environment
– Less modern syntax, user base, etc.
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Is this real programming?

• The way we use ML/Racket/Ruby can make them seem almost 
“silly” precisely because lecture and homework focus on 
interesting language constructs

• “Real” programming needs file I/O, string operations, floating-
point, graphics, project managers, testing frameworks, threads, 
build systems, …
– Many elegant languages have all that and more

• Including Racket and Ruby
– If we used Java the same way, Java would seem “silly” too
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A note on reality

Reasonable questions when deciding to use/learn a language:
• What libraries are available for reuse?
• What tools are available?
• What can get me a job?
• What does my boss tell me to do?
• What is the de facto industry standard?
• What do I already know?

Our course by design does not deal with these questions
– You have the rest of your life for that
– And technology leaders affect the answers
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