
CSE341: Programming Languages

Lecture 4
Records, Datatypes, Case Expressions

Dan Grossman
Spring 2019

Five different things
1. Syntax: How do you write language constructs?

2. Semantics: What do programs mean? (Evaluation rules)

3. Idioms: What are typical patterns for using language features to
express your computation?

4. Libraries: What facilities does the language (or a well-known
project) provide “standard”? (E.g., file access, data structures)

5. Tools: What do language implementations provide to make
your job easier? (E.g., REPL, debugger, code formatter, …)

– Not actually part of the language

These are 5 separate issues
– In practice, all are essential for good programmers
– Many people confuse them, but shouldn’t

Spring 2019 2CSE341: Programming Languages

Our Focus

This course focuses on semantics and idioms

• Syntax is usually uninteresting
– A fact to learn, like “The American Civil War ended in 1865”
– People obsess over subjective preferences

• Libraries and tools crucial, but often learn new ones “on the job”
– We are learning semantics and how to use that knowledge

to understand all software and employ appropriate idioms
– By avoiding most libraries/tools, our languages may look

“silly” but so would any language used this way

Spring 2019 3CSE341: Programming Languages

How to build bigger types

• Already know:
– Have various base types like int bool unit char
– Ways to build (nested) compound types: tuples, lists, options

• Coming soon: more ways to build compound types

• First: 3 most important type building blocks in any language
– “Each of”: A t value contains values of each of t1 t2 … tn
– “One of”: A t value contains values of one of t1 t2 … tn
– “Self reference”: A t value can refer to other t values
Remarkable: A lot of data can be described with just these
building blocks

Note: These are not the common names for these concepts

Spring 2019 4CSE341: Programming Languages

Examples

• Tuples build each-of types
– int * bool contains an int and a bool

• Options build one-of types
– int option contains an int or it contains no data

• Lists use all three building blocks
– int list contains an int and another int list or it

contains no data

• And of course we can nest compound types
– ((int * int) option * (int list list)) option

Spring 2019 5CSE341: Programming Languages

Rest of this Lecture

• Another way to build each-of types in ML
– Records: have named fields
– Connection to tuples and idea of syntactic sugar

• A way to build and use our own one-of types in ML
– For example, a type that contains an int or a string
– Will lead to pattern-matching, one of ML’s coolest and

strangest-to-Java-programmers features

• Later in course: How OOP does one-of types
– Key contrast with procedural and functional programming

Spring 2019 6CSE341: Programming Languages

Records

Record values have fields (any name) holding values

Record types have fields (and name) holding types

The order of fields in a record value or type never matters
– REPL alphabetizes fields just for consistency

Building records:

Accessing components:

(Evaluation rules and type-checking as expected)
Spring 2019 7CSE341: Programming Languages

{f1 = v1, …, fn = vn}

{f1 : t1, …, fn : tn}

{f1 = e1, …, fn = en}

#myfieldname e

Example

Evaluates to

And has type

If some expression such as a variable x has this type, then get
fields with:

Note we did not have to declare any record types
– The same program could also make a

{id=true,ego=false} of type {id:bool,ego:bool}

Spring 2019 8CSE341: Programming Languages

{name = "Matai", id = 4 - 3}

{id = 1, name = "Matai"}

{id : int, name : string}

#id x #name x

By name vs. by position

• Little difference between (4,7,9) and {f=4,g=7,h=9}
– Tuples a little shorter
– Records a little easier to remember “what is where”
– Generally a matter of taste, but for many (6? 8? 12?) fields, a

record is usually a better choice

• A common decision for a construct’s syntax is whether to refer
to things by position (as in tuples) or by some (field) name (as
with records)
– A common hybrid is like with Java method arguments (and

ML functions as used so far):
• Caller uses position
• Callee uses variables
• Could totally do it differently; some languages have

Spring 2019 9CSE341: Programming Languages

The truth about tuples

Previous lecture gave tuples syntax, type-checking rules, and
evaluation rules

But we could have done this instead:
– Tuple syntax is just a different way to write certain records
– (e1,…,en) is another way of writing {1=e1,…,n=en}
– t1*…*tn is another way of writing {1:t1,…,n:tn}
– In other words, records with field names 1, 2, …

In fact, this is how ML actually defines tuples
– Other than special syntax in programs and printing, they

don’t exist
– You really can write {1=4,2=7,3=9}, but it’s bad style

Spring 2019 10CSE341: Programming Languages

Syntactic sugar

“Tuples are just syntactic sugar for
records with fields named 1, 2, … n”

• Syntactic: Can describe the semantics entirely by the
corresponding record syntax

• Sugar: They make the language sweeter

Will see many more examples of syntactic sugar
– They simplify understanding the language
– They simplify implementing the language
Why? Because there are fewer semantics to worry about even
though we have the syntactic convenience of tuples

Another example we saw: andalso and orelse vs. if then else

Spring 2019 11CSE341: Programming Languages

Datatype bindings
A “strange” (?) and totally awesome (!) way to make one-of types:

– A datatype binding

Spring 2019 12CSE341: Programming Languages

datatype mytype = TwoInts of int * int
| Str of string
| Pizza

• Adds a new type mytype to the environment
• Adds constructors to the environment: TwoInts, Str, and Pizza
• A constructor is (among other things), a function that makes

values of the new type (or is a value of the new type):
– TwoInts : int * int -> mytype
– Str : string -> mytype
– Pizza : mytype

The values we make

• Any value of type mytype is made from one of the constructors
• The value contains:

A “tag” for “which constructor” (e.g., TwoInts)
The corresponding data (e.g., (7,9))

Examples:
TwoInts(3+4,5+4) evaluates to TwoInts(7,9)
Str(if true then "hi" else "bye") evaluates to
Str("hi")
Pizza is a value

Spring 2019 13CSE341: Programming Languages

datatype mytype = TwoInts of int * int
| Str of string
| Pizza

Using them

So we know how to build datatype values; need to access them

There are two aspects to accessing a datatype value
1. Check what variant it is (what constructor made it)
2. Extract the data (if that variant has any)

Notice how our other one-of types used functions for this:
• null and isSome check variants
• hd, tl, and valOf extract data (raise exception on wrong variant)

ML could have done the same for datatype bindings
– For example, functions like “isStr” and “getStrData”
– Instead it did something better

Spring 2019 14CSE341: Programming Languages

Case
ML combines the two aspects of accessing a one-of value with a
case expression and pattern-matching

– Pattern-matching much more general/powerful (Lecture 5)

Example:

• A multi-branch conditional to pick branch based on variant
• Extracts data and binds to variables local to that branch
• Type-checking: all branches must have same type
• Evaluation: evaluate between case … of and the right branch

Spring 2019 15CSE341: Programming Languages

fun f x = (* f has type mytype -> int *)
case x of

Pizza => 3
| TwoInts(i1,i2) => i1+i2
| Str s => String.size s

Patterns

In general the syntax is:

For today, each pattern is a constructor name followed by the right
number of variables (i.e., C or C x or C(x,y) or …)

– Syntactically most patterns (all today) look like expressions
– But patterns are not expressions

• We do not evaluate them
• We see if the result of e0 matches them

Spring 2019 16CSE341: Programming Languages

case e0 of
p1 => e1

| p2 => e2
…

| pn => en

Why this way is better

0. You can use pattern-matching to write your own testing and
data-extractions functions if you must

– But do not do that on your homework

1. You cannot forget a case (inexhaustive pattern-match warning)

2. You cannot duplicate a case (a type-checking error)

3. You will not forget to test the variant correctly and get an
exception (like hd [])

4. Pattern-matching can be generalized and made more powerful,
leading to elegant and concise code

Spring 2019 17CSE341: Programming Languages

