
Josh Pollock
joshpoll@cs.uw.edu

OH: Thursdays 4:30pm - 5:30pm

CSE 341 AB: Section 3

Introduce yourself to someone new!

● What’s your name?

● How’s your quarter?

● [insert question here]

● Share questions you have about course content.
○ If the other person can answer it, great!

○ If you both don’t know, hold on to it.

Intros

Questions?

● SML Standard Library

● Datatype Polymorphism

● Tracing Functions (For Real!!)

Agenda (Lots of Cool Stuff!)
● Higher-Order Functions

○ Returning Functions

○ map, filter, join, bind/flat_map

○ foldr

○ foldl

● Revisiting HW1

(see the section code)

SML Standard Library
Online Documentation
http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset
Top-Level http://www.standardml.org/Basis/top-level-chapter.html
List http://www.standardml.org/Basis/list.html
ListPair http://www.standardml.org/Basis/list-pair.html
Real http://www.standardml.org/Basis/real.html
String http://www.standardml.org/Basis/string.html

http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html

● Last week we saw polymorphic functions that use parametric polymorphism.

● This week we’ll look at polymorphic datatypes.

● We’ve already seen them, but you can make your own, too!

● As with polymorphic functions, type variables in polymorphic datatypes must

be substituted consistently.

● Demo!

Datatype Polymorphism

Four Kinds of Functions

Output
Term Type

Input
Term “Normal” Functions

f (x, y) = x + y ???

Type
Parametric

Polymorphism (fake syntax)
f ('a) (x) = x : 'a

Datatype
Polymorphism

datatype 'a list = ...

Four Kinds of Functions

Output
Term Type

Input
Term “Normal” Functions

f (x, y) = x + y
Dependent Types

outside course scope :(

Type
Parametric

Polymorphism (fake syntax)
f ('a) (x) = x : 'a

Datatype
Polymorphism

datatype 'a list = ...

Function Closures

Functions ARE NOT Values

Closures ARE Values

Function closures are the most unique value we’ll see.

- The only value that’s not an expression.
- Store code and bindings.

- Keep pointers to the code and to an environment.
- The environment stores the bindings that weren’t bound by the function.

- These are called free variables or open bindings.
- The environment closes the function.

Function Closures

Function Closures Visualized!

val foo = 17
val x = 1
val bar = ~4
fun f y = x + y
val y = true
val z = 27

Code

Function Closures Visualized!

id val

foo 17

x 1

foobar ~4

f

y true

z 27

Code Environment
val foo = 17
val x = 1
val bar = ~4
fun f y = x + y
val y = true
val z = 27

id val

x 1

Function Closures Visualized!

id val

foo 17

x 1

foobar ~4

f

y true

z 27

Code Environment

id val

x 1

i0

e0

e0

i0

Pointers are hard to draw.

val foo = 17
val x = 1
val bar = ~4
fun f y = x + y
val y = true
val z = 27

Function Closures Visualized!

id val

foo 17

x 1

foobar ~4

f

y true

z 27

Code Environment

id val

x 1

f

i0
e0

e0i0

e0i0

We need to support recursion!

val foo = 17
val x = 1
val bar = ~4
fun f y = x + y
val y = true
val z = 27

Tracing Function Closures

Higher-Order Functions

Returning Functions
Demo!

Higher-order functions really give functional programming its “flavor.”

Today we’ll look at higher-order functions for data manipulation.

They separate data manipulation into two parts:

- Structure traversal
- Computation

It’s also easy to write our own structure traversals.

We’re not stuck with a small set like if, while, and for.

Higher-Order Functions

map

Solution: map

[x0, x1, x2, x3]
map

[f x0, f x1, f x2, f x3]

map

(* types annotated for clarity *)
fun map ((f : 'a -> 'b,

xs : 'a list) : 'b list =
 case xs of
 [] => []
 | x::xs' => (f x)::(map (f, xs'))

filter

join

bind/flat_map

foldr

The One to Rule Them All: foldr
Remember we can think of constructors as abstract functions and values.

Cons : 'a * 'a my_list -> 'a my_list

Nil : 'a my_list

foldr replaces the constructors with functions you choose.

The One to Rule Them All: foldr

The One to Rule Them All: foldr

(op ::) : 'a * 'a list -> 'a list
[] : 'a list

f : 'a * 'b -> 'b
z : 'b

(op :: is the prefix version of ::)

foldr

(* types annotated for clarity *)
fun foldr (f : 'a * 'b -> 'b,

 z : 'b,
 xs : 'a list) : 'b =

 case xs of
 [] => z
 | x::xs' => f (x, foldr (f, z, xs'))

foldr (fn (x, acc) => x::acc, [3, 4], [1, 2])

foldr (fn (x, acc) => x::acc, [3, 4], [1, 2])

1::(foldr (fn (x, acc) => x::acc, [3, 4], [2])

foldr (fn (x, acc) => x::acc, [3, 4], [1, 2])

1::(foldr (fn (x, acc) => x::acc, [3, 4], [2])

1::(2::(foldr (fn (x, acc) => x::acc, [3, 4], []))

foldr (fn (x, acc) => x::acc, [3, 4], [1, 2])

1::(foldr (fn (x, acc) => x::acc, [3, 4], [2])

1::(2::(foldr (fn (x, acc) => x::acc, [3, 4], []))

1::(2::[3, 4])

foldr (fn (x, acc) => x::acc, [3, 4], [1, 2])

1::(foldr (fn (x, acc) => x::acc, [3, 4], [2])

1::(2::(foldr (fn (x, acc) => x::acc, [3, 4], []))

1::(2::[3, 4])

1::[2, 3, 4]

foldr (fn (x, acc) => x::acc, [3, 4], [1, 2])

1::(foldr (fn (x, acc) => x::acc, [3, 4], [2])

1::(2::(foldr (fn (x, acc) => x::acc, [3, 4], []))

1::(2::[3, 4])

1::[2, 3, 4]

[1, 2, 3, 4]

foldl

What about tail recursion?
Reversing and summing are needlessly slow with foldr.

Solution: foldl

(* types annotated for clarity *)
fun foldl (f : 'b * 'a -> 'b,

 acc : 'b,
 xs : 'a list) : 'b =

 case xs of
 [] => acc
 | x::xs' => foldl (f, f (acc, x), xs')

foldl generalizes the accumulator pattern

foldr vs foldl

foldr goes down then up
foldl only goes up

foldl (fn (acc, x) => x::acc, [], [1, 2, 3])

foldl (fn (acc, x) => x::acc, [], [1, 2, 3])

foldl (fn (acc, x) => x::acc, [1], [2, 3])

foldl (fn (acc, x) => x::acc, [], [1, 2, 3])

foldl (fn (acc, x) => x::acc, [1], [2, 3])

foldl (fn (acc, x) => x::acc, [2, 1], [3])

foldl (fn (acc, x) => x::acc, [], [1, 2, 3])

foldl (fn (acc, x) => x::acc, [1], [2, 3])

foldl (fn (acc, x) => x::acc, [2, 1], [3])

foldl (fn (acc, x) => x::acc, [3, 2, 1], [])

foldl (fn (acc, x) => x::acc, [1], [2, 3])

foldl (fn (acc, x) => x::acc, [2, 1], [3])

foldl (fn (acc, x) => x::acc, [3, 2, 1], [])

[3, 2, 1]

foldl (fn (acc, x) => x::acc, [], [1, 2, 3])

You should use foldl when you need tail recursion.

BUT…

- You can write foldl in terms of foldr.
- We may get to this next week.

- foldr generalizes naturally to other datatypes, and foldl does not.

But foldr Is Still “Better”

Most common datatypes have a natural version of foldr.*

Generalize the types of the datatype constructors.

Match clause → function (or constant if it has no arguments).

See section file for examples.

Generalizing foldr.

*It’s called a catamorphism.

HO functions allow for (among other things) better separation of concerns.

Today we saw how you to separate traversal strategies and computation.

It will probably require some time for these functions to sink in.

But once they do, they make your code easier to read and write!

Higher-Order Functions Are Difficult But Useful

