
CSE341
Section 3

Standard-Library Docs, First-Class Functions, & More

Adapted from slides by Daniel Snitkovskiy, Nick Mooney, Nicholas Shahan, Patrick Larson, and Dan Grossman

1. SML Docs
• Standard Basis

2. Polymorphic Datatypes
3. First-Class Functions

• Anonymous
• Style Points
• Higher-Order

Agenda

Standard Basis Documentation
Online Documentation

http://www.standardml.org/Basis/index.html

http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset

Top-Level http://www.standardml.org/Basis/top-level-chapter.html

List http://www.standardml.org/Basis/list.html

ListPair http://www.standardml.org/Basis/list-pair.html

Real http://www.standardml.org/Basis/real.html

String http://www.standardml.org/Basis/string.html

http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html

Is Json an equality type?

Oh Shoot…. How to compare?

val x = String “abcd”; (* type json *)
val String y = x;

(* now y is equality type String *)
val test1 = y = “abcd”;

One more note

Real is not an equality type, you cannot compare
them using “=”. Instead, you should….

val x = 3.14; (* real type *)
val epsilon = 0.00001;

val test = x - 3.14 < epsilon;

Polymorphic Datatypes

Suppose we want to create a Pair datatype

• A pair has two elements
• Both element must be of the same type

datatype ‘a pair = Pair of ‘a * ‘a

Now it’s your term

Suppose we want to create a tree datatype

• A node can be a leaf
• A node can be the root of a subtree
• Both leaf and non-leaf node contain some

value, their value could be different

E.g. Node 10
Node (“abc”, Node 10, Node 20)

Now it’s your term

We solve this problem by having polymorphic
datatypes:

datatype (‘a, ‘b) tree =
 Leaf of ‘a
| Node of ‘b * (‘a, ‘b) tree * (‘a, ‘b) tree

Anonymous Functions
An Anonymous Function

fn pattern => expression

• An expression that creates a new function with no name.

• Usually used as an argument to a higher-order function.

• Almost equivalent to the following:

let fun name pattern = expression in name end

What’s the difference? What can you do with one that you can’t do with the other?

• The difference is that anonymous functions cannot be recursive!!!

Anonymous Functions
What's the difference between the following two bindings?

val name = fn pattern => expression;

fun name pattern = expression;

• Once again, the difference is recursion.

• However, excluding recursion, a fun binding could just be syntactic sugar for a
val binding and an anonymous function.

Something is wrong….
What’s wrong with these expressions?

(if ex then true else false)

(fn xs => tl xs)

Unnecessary Function Wrapping
What's the difference between the following two expressions?

(fn xs => tl xs) vs. tl

STYLE POINTS!

• Other than style, these two expressions result in the exact same thing.

• However, one creates an unnecessary function to wrap tl.

• This is very similar to this style issue:

(if ex then true else false) vs. ex

Higher-Order Functions
Definition: A function that returns a function or takes a function as an argument.

• SML functions can be passed around like any other value.

• They can be passed as function arguments, returned, and even stored in data
structures or variables.

• Generalized functions such as these are very pervasive in functional languages
(and are starting to creep into more Object-Oriented ones too, e.g. Java)

Canonical Higher-Order Functions

Note: List.map, List.filter, and List.foldr/foldl are similarly defined in SML but use currying. We'll
cover these later in the course.

map

● map : ('a -> 'b) * 'a list -> 'b list

What does the type tell is?
● What are the arguments?
● What is the return type?

map

● map : ('a -> 'b) * 'a list -> 'b list

What does the type tell is?
● What are the arguments?
● What is the return type?

● map applies a function to every element of a list and return a list of the
resulting values.
– Example: map (fn x => x*3, [1,2,3]) === [3,6,9]

map
– Sample: map (fn x => x*3, [1,2,3])

 [1, 2, 3]

map
– Sample: map (fn x => x*3, [1,2,3])

 [1, 2, 3]
 | | |
 [, ,]

map
– Sample: map (fn x => x*3, [1,2,3])

 [1, 2, 3]
 | | |
 [3, ,]

fn
1 =

> 1
*3

map
– Sample: map (fn x => x*3, [1,2,3])

 [1, 2, 3]
 | | |
 [3, 6,]

fn
1 =

> 1
*3

fn
2 =

> 2
*3

map
– Sample: map (fn x => x*3, [1,2,3])

 [1, 2, 3]
 | | |
 [3, 6, 9]

fn
1 =

> 1
*3

fn
2 =

> 2
*3

fn
3 =

> 3
*3

flat_map
● flat_map :

('a -> 'b list) * 'a list -> 'b list
● map :

('a -> 'b) * 'a list -> 'b list

Notice the difference?

flat_map
● flat_map :

('a -> 'b list) * 'a list -> 'b list
● map :

('a -> 'b) * 'a list -> 'b list

Notice the difference?

● flat_map applies a function which returns a list to every element of a list
and return a concatenated list of the resulting lists.
– Example:

flat_map (fn x => [x,~x], [1,2,3]) === [1,~1,2,~2,3,~3]

flat_map
– Sample: flat_map (fn x => [x,~x], [1,2,3])

 [1, 2, 3]

flat_map
– Sample: flat_map (fn x => [x,~x], [1,2,3])

 [1, 2, 3]
 | | |
 [, , , , ,]

flat_map
– Sample: flat_map (fn x => [x,~x], [1,2,3])

 [1, 2, 3]
 | | |
 [1,~1, , , ,]

fn
1 =

> [
1,~

1]

flat_map
– Sample: flat_map (fn x => [x,~x], [1,2,3])

 [1, 2, 3]
 | | |
 [1,~1,2,~2, ,]

fn
1 =

> [
1,~

1]

fn
2 =

> [
2,~

2]

flat_map
– Sample: flat_map (fn x => [x,~x], [1,2,3])

 [1, 2, 3]
 | | |
 [1,~1,2,~2,3,~3]

fn
1 =

> [
1,~

1]

fn
2 =

> [
2,~

2]

fn
3 =

> [
3,~

3]

filter

● filter : ('a -> bool) * 'a list -> 'a list

What could be the type of this function?
○ What are the arguments?
○ What is the return type?

filter

● filter : ('a -> bool) * 'a list -> 'a list

What could be the type of this function?
○ What are the arguments?
○ What is the return type?

● filter returns the list of elements from the original list that, when a
predicate function is applied, result in true.
– Example: filter (fn x => x>2, [~5,3,2,5]) === [3,5]

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]
 | | | |
 [? ? ? ?]

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]
 | | | |
 [? ? ?]

fn
1 =

> 1
 >

1

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]
 | | | |
 [2, ? ?]

fn
1 =

> 1
 >

1

fn
2 =

> 2
 >

1

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]
 | | | |
 [2, ?]

fn
1 =

> 1
 >

1

fn
2 =

> 2
 >

1

fn
0 =

> 0
 >

1

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]
 | | | |
 [2, 3]

fn
1 =

> 1
 >

1

fn
2 =

> 2
 >

1

fn
3 =

> 3
 >

1

fn
0 =

> 0
 >

1

filter
– Sample: filter (fn x => x > 1, [1,2,0,3])

 [1, 2, 0, 3]
 | |
 [2, 3]

fn
2 =

> 2
 >

1

fn
3 =

> 3
 >

1

fold

• fold : ('a * 'b -> 'a) * 'a * 'b list -> 'a
– Returns a “thing” that is the accumulation of the first argument applied to the

third arguments elements stored in the second argument.

– Example: fold((fn (a,b) => a + b), 0, [1,2,3]) === 6

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1

acc =

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1

acc = fn (1, 2) => 1*2

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1
 2

fn (1, 2) => 1*2

acc =

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1
 2

fn (1, 2) => 1*2

fn (2, 1) => 2*1 acc =

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1
 2
 2

fn (1, 2) => 1*2

fn (2, 1) => 2*1

acc =

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1
 2
 2

fn (1, 2) => 1*2

fn (2, 1) => 2*1

fn (2, 4) => 2*4 acc =

fold
– Sample: fold (fn (acc, x) => acc * x, 1, [2, 1, 4])

 [2, 1, 4]
 1
 2
 2
 8

fn (1, 2) => 1*2

fn (2, 1) => 2*1

fn (2, 4) => 2*4

acc =

