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Today’s Agenda

• Mutual Recursion

• Module System Example

• Practice with Currying and High Order Functions
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Mutual Recursion

• What if we need function f to call g, and function g 
to call f?

• This is a common idiom
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fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately this 
does not work ☹



Mutual Recursion Workaround
• We can use higher order functions to get this 

working

• It works, but there has got to be a better way!
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fun earlier f x =
...
f x
...

fun later x =
...
earlier later x
...



Mutual Recursion with and
• SML has a keyword for that

• Works with mutually recursive datatype 
bindings  too
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fun earlier x =
...
later x
...

and later x =
...
earlier x
...



Module System

• Good for organizing code, and managing 
namespaces (useful, relevant)

• Good for maintaining invariants (interesting)

• Hide implementation details
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Deja vu?

We have similar things in Java!
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It’s called interface!



Let’s implement an encoder!

An encoder should… 

1. Be able to encrypt a message
2. Be able to decrypt a message
3. Never allow user to create an encrypted 

message directly



Matching signature and struct

Rules:
● Everything in signature must in struct

● Type in signature and type in struct must match

● Must specify type if type in signature is unspecified



Matching signature and struct

Will it match?
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Matching signature and struct

Will it match?



Interesting Examples of Invariants

• Ordering of operations
• e.g. insert, then query

• Data kept in good state
• e.g. fractions in lowest terms

• Policies followed
• e.g. don't allow shipping request without purchase 

order
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Currying and High Order Functions

• Some examples:
• List.map: 

• ('a -> 'b) -> 'a list -> 'b list
• List.filter: 

• ('a -> bool) -> 'a list -> 'a list
• List.foldl: 

• ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
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Practice: only_valid

● Type: 
○ (int * int) list -> (int * int) list

● Behavior: 
○ Does this look familiar? 
○ Returns a list of int tuples with the elements of the input list of 

int tuples that match a certain criteria. 
○ Let’s just say the criteria is that both ints add up to 17

■ e.g. only_valid [(1,16),(2,5)] === 
[(1,16)]



Code: only_valid

fun is_valid(x,y) = x + y = 17

val only_valid = List.filter is_valid

  



Practice: product_valid

● Type: 
○ (int * int) list -> bool

● Behavior: 
○ Returns a bool indicating whether all the products of elements in 

each tuple with both elements are positive are divisible by five.
○ e.g. product_valid [(1,15),(~2,15)] 

=== true  (since 15 mod 5 = 0)
○ e.g. product_valid [(1,13),(~2, ~2)] 

=== false (since 13 mod 5 <> 0)



Code: product_valid

fun is_valid(x,y) = x > 0 andalso y > 0

val only_valid = List.filter is_valid

val prods = List.map (fn (a, b) => a * b)

fun checker (prod, tst) = 

tst andalso (prod mod 5 = 0)

fun product_valid lst = 

List.foldl checker true (prods (only_valid lst))

  


