
CSE 341
Section 4

Spring 2019

With thanks to Daniel Snitkovskiy, Nick Mooney &
Spencer Pearson

Today’s Agenda

• Mutual Recursion

• Module System Example

• Practice with Currying and High Order Functions

2

Mutual Recursion

• What if we need function f to call g, and function g
to call f?

• This is a common idiom

3

fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately this
does not work ☹

Mutual Recursion Workaround
• We can use higher order functions to get this

working

• It works, but there has got to be a better way!

4

fun earlier f x =
...
f x
...

fun later x =
...
earlier later x
...

Mutual Recursion with and
• SML has a keyword for that

• Works with mutually recursive datatype
bindings too

5

fun earlier x =
...
later x
...

and later x =
...
earlier x
...

Module System

• Good for organizing code, and managing
namespaces (useful, relevant)

• Good for maintaining invariants (interesting)

• Hide implementation details

6

Deja vu?

We have similar things in Java!

7

It’s called interface!

Let’s implement an encoder!

An encoder should…

1. Be able to encrypt a message
2. Be able to decrypt a message
3. Never allow user to create an encrypted

message directly

Matching signature and struct

Rules:
● Everything in signature must in struct

● Type in signature and type in struct must match

● Must specify type if type in signature is unspecified

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Interesting Examples of Invariants

• Ordering of operations
• e.g. insert, then query

• Data kept in good state
• e.g. fractions in lowest terms

• Policies followed
• e.g. don't allow shipping request without purchase

order

17

Currying and High Order Functions

• Some examples:
• List.map:

• ('a -> 'b) -> 'a list -> 'b list
• List.filter:

• ('a -> bool) -> 'a list -> 'a list
• List.foldl:

• ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

18

Practice: only_valid

● Type:
○ (int * int) list -> (int * int) list

● Behavior:
○ Does this look familiar?
○ Returns a list of int tuples with the elements of the input list of

int tuples that match a certain criteria.
○ Let’s just say the criteria is that both ints add up to 17

■ e.g. only_valid [(1,16),(2,5)] ===
[(1,16)]

Code: only_valid

fun is_valid(x,y) = x + y = 17

val only_valid = List.filter is_valid

Practice: product_valid

● Type:
○ (int * int) list -> bool

● Behavior:
○ Returns a bool indicating whether all the products of elements in

each tuple with both elements are positive are divisible by five.
○ e.g. product_valid [(1,15),(~2,15)]

=== true (since 15 mod 5 = 0)
○ e.g. product_valid [(1,13),(~2, ~2)]

=== false (since 13 mod 5 <> 0)

Code: product_valid

fun is_valid(x,y) = x > 0 andalso y > 0

val only_valid = List.filter is_valid

val prods = List.map (fn (a, b) => a * b)

fun checker (prod, tst) =

tst andalso (prod mod 5 = 0)

fun product_valid lst =

List.foldl checker true (prods (only_valid lst))

