PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE 341
Section 4

Spring 2019

With thanks to Daniel Snitkovskiy, Nick Mooney &
Spencer Pearson




Today’s Agenda

* Mutual Recursion
* Module System Example
* Practice with Currying and High Order Functions



Mutual Recursion

* What if we need function f to call g, and function g
to call f?

e Thic ic A ~rAmmmAn iIAIAM

fun earlier x = Unfortunately this
o does not work (X
later x

fun later x =

earlier x



Mutual Recursion Workaround

* We can use higher order functions to get this
working

* It works, but there has got to be a better way!

fun earlier £ x =
f x
fun later x =

earlier later x



Mutual Recursion with and

* SML has a keyword for that

* Works with mutually recursive datatype

bindings too
fun earlier x =

later x
and later x =

earlier x



Module System

* Good for organizing code, and managing
namespaces (useful, relevant)

* Good for maintaining invariants (interesting)
* Hide implementation details



Deja vu?

We have similar things in Java!




Let’s implement an encoder!

An encoder should...

1. Be able to encrypt a message

2. Be able to decrypt a message

3. Never allow user to create an encrypted
message directly



Matching signature and struct

Rules:
e Everything in signature must in struct

e Type in signature and type in struct must match

e Must specify type if type in signature is unspecified



Matching signature and struct

Will it match?

string —> string

structure structAl :> sigA =

S EELIGT

int x 1int
fnis => 341



Matching signature and struct

Will it match?

string —> string

structure structA2 :> sigA =



Matching signature and struct

signhature sigA =

Will it match?

string —> string
> structA3 :> sigA =

exception a

type b = real * real

val N =



Matching signature and struct

signature sigB =

& Will it match?

exception a of 1int
type b = string *x string

structure structBl :> sigB =

type C
SCRUCT

exception a
type b = string * string

= 1nt * real




Matching signature and struct

signature sigB =

& Will it match?

exception a of 1int
type b = string *x string
type c

string * string

int *x real



Matching signature and struct

signature sigB =

Will it match?

x string

structure structB3 :> sigB =

SURUCT
exception a of 1int
type b = string * string
datatype @ = cse of 1int




Matching signature and struct

signature sigB =

Will it match?

structure structB4 :> sigB =
SEFUCT

exception a of int

string *x string

int *x real




Interesting Examples of Invariants

* Ordering of operations
* e.g. insert, then query

e Data kept in good state
 e.g. fractions in lowest terms

 Policies followed

e e.g. don't allow shipping request without purchase
order



Currying and High Order Functions

* Some examples:
* List.map:
®* ('a -> 'b) -> 'a list -> 'b list
* List.filter:
®* ('a -> bool) -> 'a list -> 'a 1list
* List.foldl:
* ('a * 'b -> 'b) -> 'b -> 'a list -> 'b



Practice: only valid

e Type:
O (int * int) list -> (int * int) 1list
e Behavior:
o Does this look familiar?
o Returns a list of int tuples with the elements of the input list of
int tuples that match a certain criteria.
o Let’s just say the criteria is that both ints add up to 17
m e.g. only valid [(1,16),(2,5)] ===
[(1,16)]



Code: only valid

fun 1s valid(x,y) = x + vy = 17

val only valid = List.filter is valid



Practice: product_valid

e Type:

O

(int * int) list -> bool

e Behavior:

O

Returns a bool indicating whether all the products of elements in
each tuple with both elements are positive are divisible by five.

e.g. product valid [(1,15), (~2,15)]
=== true (since 15 mod 5 = 0)

e.g. product valid [(1,13), (~2, ~2)]
=== false (since 13 mod 5 <> 0)



Code: product_valid

fun is valid(x,y) = x > 0 andalso y > 0
val only valid = List.filter is valid
val prods = List.map (fn (a, b) => a * Db)
fun checker (prod, tst) =
tst andalso (prod mod 5 = 0)
fun product valid 1lst =
List.foldl checker true (prods (only valid lst))



