
Section 8 - Ruby practice
This handout was composed by Porter Jones. There are probably plenty of typos/incorrect solutions/etc for you to catch! Please email me with any issues,
comments, or feedback at pbjones@cs.washington.edu. All thoughts are welcome :)

Practice with Arrays and blocks
1) Write a method lengths that takes an array and returns a new array that is the result of calling

length on all of the elements in the given array.

2) Write a method rev that takes an array and returns a new array with all of the elements from the
original array in the reverse order. You aren’t allowed to use the Array class’ reverse method (though
in real life you probably should).

3) Write a method num_even that takes an array and returns the number of even elements in that array.
There’s a handy method even? that you may find useful.

4) Write a method all_equal? that returns true if all the elements in a given array are equal or if the
given array is empty and false otherwise.

5) Write a method prime that takes in a positive integer greater than 1 and returns an array of all the
prime numbers from 1 to the given number.

6) Write a method trigger_sum that takes in an array and a “trigger” number. trigger_sum creates a
cumulative sum of all the values in the array until it finds the trigger number, at which point it begins
subtracting future numbers (including the trigger) from the cumulative sum. The trigger only occurs
once. If the trigger is not in the given array, then it will just end up returning the cumulative sum.

Practice with Hashes
1) Write a method keys_and_values that takes a hash and returns an array of elements that are both

keys and values in the given hash. You might find the arrays set difference operator & to be useful.

2) Write a method flip_hash that takes a hash and returns a new hash where every key-value pair in
the original hash is flipped.

3) Write a method intersect that takes two hashes and returns a new hash that contains all of the

key-value pairs that appear in both of the given hashes.

Practice using blocks
Implement the following functions using the arrays each method. Remember you can call a block given to a
method using yield, and you can pass yield any necessary arguments.

1) Implement our_map which takes an array and expects a block and behaves as the built in arrays map
function would with the given block.

2) Implement our_select which takes an array and expects a block and behaves as the built in arrays
select function would with the given block.

3) Implement our_inject which takes an array and an initial value and expects a block and behaves as

the built in arrays inject function would with the given initial value and block.

Super brief Ruby cheat sheet (really just for this handout)

arr = [1, 2, 3, 4, 5]

calls block on each value in arr, returns arr

arr.each { |x| block }

returns a new array of block mapped across all elements in arr

arr.map { |x| block }

returns a new array of elements in arr for which the block returns true

arr.select { |x| block }

returns the number of elements for which the given block is true

arr.count { |x| block }

behaves like fold over arr starting at init and accumulating the block

arr.inject(init) { |acc, x| block }

true only if all the elements in arr return true for the given block

arr.all? { |x| block }

true if any of the elements in arr return true for the given block

arr.any? { |x| block }

hashes also have a version of many iterative functions

the blocks typically expect two arguments instead of one (for key and value)

h = {1=>2, 3=>4, 5=>6}

For example, each

h.each {|k, v| puts k + v }

Section 8 - Solutions
This handout was composed by Porter Jones. There are probably plenty of typos/incorrect solutions/etc for you to catch! Please email me with any issues,
comments, or feedback at pbjones@cs.washington.edu. All thoughts are welcome :)

Practice with Arrays
1) def lengths xs

 xs.map {|x| x.length }

end

2) def rev xs

 xs.inject([]) {|acc, x| acc.unshift x }

end

3) def num_even xs

 xs.count {|x| x.even? }

end

4) def all_equal? xs

 xs.all? {|x| x == xs[0]}

end

5) def prime n

 (2..n).select {|x| (2..Math.sqrt(x).to_i).all? {|y| x % y != 0} }

end

6) def trigger_sum xs, x

 sub = false

 xs.inject(0) do |acc, y|

 if sub or x == y

 sub = true

 acc - y

 else

 acc + y

 end

 end

end

Practice with Hashes
1) def keys_and_values h

 h.keys & h.values

end

2) def flip_hash h

 res = {}

 h.each {|k, v| res[v] = k }

 res

end

3) def intersect h1, h2

 h1.select {|k, v| h2[k] == v }

end

Practice using blocks
1) def our_map1 xs

 result = Array.new(xs.length)

 i = 0

 xs.each do |x|

 result[i] = yield x

 i += 1

 end

 result

end

def our_map2 xs

 result = []

 xs.each {|x| result.push yield x }

 result

end

2) def our_select xs

 result = []

 xs.each {|x| result.push x if yield x }

 result

end

3) def our_inject xs, init

 xs.each {|x| init = yield init, x }

 init

end

