
CSE 341 AA: Section 8

Porter Jones
pbjones@cs.washington.edu
Office Hours: Thursdays 5:30 - 7:30pm

Ruby Arrays
● Very flexible and can be used in many different ways
● Widely used in Ruby programming for a variety of tasks

one way to create an array
a = [1, 2, 3, 4]

create a new array with a given size
b = Arrays.new(10)

initialize it with a block!
c = Arrays.new(10) { |i| i * i }

Ruby Arrays: super dynamic and flexible
dynamic types (of course)
a = [1, “hello”, [2, 3], false]

index out of bounds returns nil, negative wraps around
the line below assigns last element to nil
a[-1] = a[10]

assigning element outside size is perfectly fine
fills in empty spaces with nil
a[20] = “way off the end”

Ruby Arrays: also not arrays
Can be used as a set
a = [1, 2, 3, 3]
b = [2, 3, 4]

& is set intersection, | is set union, - is subtraction
a & b # gives [2, 3]
a | b # gives [1, 2, 3, 4]

& and | will automatically remove duplicates
can also use .uniq to turn an array into a set
a.uniq # gives [1, 2, 3]

Ruby Arrays: still not arrays
Can be used as stacks and queues!
a = []
a.push 2
a.push 3
a.pop # gives 3
a.pop # gives 2
a.pop # gives nil

shift takes the first element off the array
a = [1, 2, 3]
a.shift # gives 1

Ruby Arrays: a few more things
Can alias other arrays
a = [1, 2, 3]
b = a # b refers to the same array that a does
c = a.clone # c actually refers to a shallow copy of a

Can splice arrays with arr[start_index, num_elements]
a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
a[3, 3] # gives [4, 5, 6]

Can also assign splices!!
a[3, 3] = [1] # a is now [1, 2, 3, 1, 7, 8, 9]

Ruby Hashes
Creates empty hash, stores keys and values
h = {}

Add records
h[“best dessert”] = “ice cream”
h[true] = 32

Get the keys and values for a hash
h.keys
h.values

Ranges
Creates range of values 1 to 100
(1..100)

Ranges can be used in similar ways to arrays (duck typing)
(1..100).each {|x| puts x }

...but they aren’t arrays, no indexing!
can’t do (1..100)[5]

can turn them into arrays if you need to
(1..100).to_a

Enumerables and blocks

● Arrays, Hashes, and Ranges are examples of enumerable objects

● Can use enumerable methods that take a block for performing certain
functionalities across all elements in the enumerable

each

a = [1, 2, 3, 4]
sum = 0

Note the lexical scope!
b = a.each {|x| sum += x }

sum = 10
each returns the enumerable it was called on
so b = [1, 2, 3, 4]

map, select, inject

a = [1, 2, 3, 4]

b will become [2, 4, 6, 8]
b = a.map {|x| x * 2}

like filter, c will become [3, 4]
c = a.select {|x| x > 2}

like fold, d will become 10
d = a.inject(0) {|acc, x| acc + x }

calling blocks

use block_given? to know if given a block
use yield to call the block
def example_block x
 if block_given?
 yield x
 else
 x
 end
end

