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Last Topic of Unit

More careful look at what “two pieces of code are equivalent” means

– Fundamental software-engineering idea

– Made easier with 

• Abstraction (hiding things)

• Fewer side effects

Not about any “new ways to code something up” 
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Equivalence

Must reason about “are these equivalent” all the time

– The more precisely you think about it the better

• Code maintenance: Can I simplify this code?

• Backward compatibility: Can I add new features without 
changing how any old features work?

• Optimization: Can I make this code faster?

• Abstraction: Can an external client tell I made this change?

To focus discussion: When can we say two functions are 
equivalent, even without looking at all calls to them?

– May not know all the calls (e.g., we are editing a library)
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A definition

Two functions are equivalent if they have the same “observable 
behavior” no matter how they are used anywhere in any program

Given equivalent arguments, they:

– Produce equivalent results

– Have the same (non-)termination behavior

– Mutate (non-local) memory in the same way

– Do the same input/output

– Raise the same exceptions

Notice it is much easier to be equivalent if:

• There are fewer possible arguments, e.g., with a type system 
and abstraction

• We avoid side-effects: mutation, input/output, and exceptions
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Example

Since looking up variables in ML has no side effects, these two 
functions are equivalent:

But these next two are not equivalent in general: it depends on 
what is passed for f

– Are equivalent if argument for f has no side-effects

– Example: g ((fn i => print "hi" ; i), 7)

– Great reason for “pure” functional programming
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fun f x = x + x
val y = 2
fun f x = y * x

fun g (f,x) = 
(f x) + (f x)

val y = 2
fun g (f,x) = 

y * (f x)



Another example

These are equivalent only if functions bound to g and h do not 
raise exceptions or have side effects (printing, updating state, etc.)

– Again: pure functions make more things equivalent

– Example: g divides by 0 and h mutates a top-level reference

– Example: g writes to a reference that h reads from
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fun f x = 
let
val y = g x
val z = h x

in
(y,z)

end

fun f x = 
let
val z = h x
val y = g x

in
(y,z)

end



One that really matters

Once again, turning the left into the right is great but only if the 
functions are pure:
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map f (map g xs) map (f o g) xs



Syntactic sugar

Using or not using syntactic sugar is always equivalent

– By definition, else not syntactic sugar

Example:

But be careful about evaluation order
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fun f x = 
if x
then g x
else false

fun f x = 
x andalso g x

fun f x = 
if g x
then x
else false

fun f x = 
x andalso g x



Standard equivalences

Three general equivalences that always work for functions

– In any (?) decent language

1. Consistently rename bound variables and uses

But notice you can’t use a variable name already used in the 
function body to refer to something else
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val y = 14
fun f x = x+y+x

val y = 14
fun f z = z+y+z

val y = 14
fun f x = x+y+x

val y = 14
fun f y = y+y+y

fun f x = 
let val y = 3
in x+y end

fun f y = 
let val y = 3
in y+y end



Standard equivalences

Three general equivalences that always work for functions

– In (any?) decent language

2.  Use a helper function or do not

But notice you need to be careful about environments
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val y = 14
fun f x = x+y+x
fun g z = (f z)+z

val y = 14
fun g z = (z+y+z)+z

val y = 14
fun f x = x+y+x
val y = 7
fun g z = (f z)+z

val y = 14
val y = 7
fun g z = (z+y+z)+z



Standard equivalences

Three general equivalences that always work for functions

– In (any?) decent language

3. Unnecessary function wrapping

But notice that if you compute the function to call and that 
computation has side-effects, you have to be careful

Summer 2019 11CSE341: Programming Languages

fun f x = x+x
fun g y = f y

fun f x = x+x
val g = f

fun f x = x+x
fun h () = (print "hi";         

f)
fun g y = (h()) y

fun f x = x+x
fun h () = (print "hi";         

f)
val g = (h())



One more

If we ignore types, then ML let-bindings can be syntactic sugar for 
calling an anonymous function:

– These both evaluate e1 to v1, then evaluate e2 in an 
environment extended to map x to v1

– So exactly the same evaluation of expressions and result

But in ML, there is a type-system difference:
– x on the left can have a polymorphic type, but not on the right

– Can always go from right to left
– If x need not be polymorphic, can go from left to right
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let val x = e1
in e2 end

(fn x => e2) e1



What about performance?

According to our definition of equivalence, these two functions are 
equivalent, but we learned one is awful

– (Actually we studied this before pattern-matching)
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fun max xs =
case xs of
[] => raise Empty

| x::[] => x
| x::xs’ => 

if x > max xs’
then x 
else max xs’

fun max xs =
case xs of
[] => raise Empty

| x::[] => x
| x::xs’ => 

let 
val y = max xs’

in
if x > y 
then x 
else y

end



Different definitions for different jobs

• PL Equivalence (341): given same inputs, same outputs and effects
– Good: Lets us replace bad max with good max

– Bad: Ignores performance in the extreme

• Asymptotic equivalence (332): Ignore constant factors

– Good: Focus on the algorithm and efficiency for large inputs

– Bad: Ignores “four times faster”

• Systems equivalence (333): Account for constant overheads, 
performance tune

– Good: Faster means different and better

– Bad: Beware overtuning on “wrong” (e.g., small) inputs; definition 
does not let you “swap in a different algorithm”

Claim: Computer scientists implicitly (?) use all three every (?) day
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