
CSE341: Programming Languages

Lecture 12
Equivalence

Brett Wortzman

Summer 2019

Slides originally created by Dan Grossman

Last Topic of Unit

More careful look at what “two pieces of code are equivalent” means

– Fundamental software-engineering idea

– Made easier with

• Abstraction (hiding things)

• Fewer side effects

Not about any “new ways to code something up”

Summer 2019 2CSE341: Programming Languages

Equivalence

Must reason about “are these equivalent” all the time

– The more precisely you think about it the better

• Code maintenance: Can I simplify this code?

• Backward compatibility: Can I add new features without
changing how any old features work?

• Optimization: Can I make this code faster?

• Abstraction: Can an external client tell I made this change?

To focus discussion: When can we say two functions are
equivalent, even without looking at all calls to them?

– May not know all the calls (e.g., we are editing a library)

Summer 2019 3CSE341: Programming Languages

A definition

Two functions are equivalent if they have the same “observable
behavior” no matter how they are used anywhere in any program

Given equivalent arguments, they:

– Produce equivalent results

– Have the same (non-)termination behavior

– Mutate (non-local) memory in the same way

– Do the same input/output

– Raise the same exceptions

Notice it is much easier to be equivalent if:

• There are fewer possible arguments, e.g., with a type system
and abstraction

• We avoid side-effects: mutation, input/output, and exceptions

Summer 2019 4CSE341: Programming Languages

Example

Since looking up variables in ML has no side effects, these two
functions are equivalent:

But these next two are not equivalent in general: it depends on
what is passed for f

– Are equivalent if argument for f has no side-effects

– Example: g ((fn i => print "hi" ; i), 7)

– Great reason for “pure” functional programming

Summer 2019 5CSE341: Programming Languages

fun f x = x + x
val y = 2
fun f x = y * x

fun g (f,x) =
(f x) + (f x)

val y = 2
fun g (f,x) =

y * (f x)

Another example

These are equivalent only if functions bound to g and h do not
raise exceptions or have side effects (printing, updating state, etc.)

– Again: pure functions make more things equivalent

– Example: g divides by 0 and h mutates a top-level reference

– Example: g writes to a reference that h reads from

Summer 2019 6CSE341: Programming Languages

fun f x =
let
val y = g x
val z = h x

in
(y,z)

end

fun f x =
let
val z = h x
val y = g x

in
(y,z)

end

One that really matters

Once again, turning the left into the right is great but only if the
functions are pure:

Summer 2019 7CSE341: Programming Languages

map f (map g xs) map (f o g) xs

Syntactic sugar

Using or not using syntactic sugar is always equivalent

– By definition, else not syntactic sugar

Example:

But be careful about evaluation order

Summer 2019 8CSE341: Programming Languages

fun f x =
if x
then g x
else false

fun f x =
x andalso g x

fun f x =
if g x
then x
else false

fun f x =
x andalso g x

Standard equivalences

Three general equivalences that always work for functions

– In any (?) decent language

1. Consistently rename bound variables and uses

But notice you can’t use a variable name already used in the
function body to refer to something else

Summer 2019 9CSE341: Programming Languages

val y = 14
fun f x = x+y+x

val y = 14
fun f z = z+y+z

val y = 14
fun f x = x+y+x

val y = 14
fun f y = y+y+y

fun f x =
let val y = 3
in x+y end

fun f y =
let val y = 3
in y+y end

Standard equivalences

Three general equivalences that always work for functions

– In (any?) decent language

2. Use a helper function or do not

But notice you need to be careful about environments

Summer 2019 10CSE341: Programming Languages

val y = 14
fun f x = x+y+x
fun g z = (f z)+z

val y = 14
fun g z = (z+y+z)+z

val y = 14
fun f x = x+y+x
val y = 7
fun g z = (f z)+z

val y = 14
val y = 7
fun g z = (z+y+z)+z

Standard equivalences

Three general equivalences that always work for functions

– In (any?) decent language

3. Unnecessary function wrapping

But notice that if you compute the function to call and that
computation has side-effects, you have to be careful

Summer 2019 11CSE341: Programming Languages

fun f x = x+x
fun g y = f y

fun f x = x+x
val g = f

fun f x = x+x
fun h () = (print "hi";

f)
fun g y = (h()) y

fun f x = x+x
fun h () = (print "hi";

f)
val g = (h())

One more

If we ignore types, then ML let-bindings can be syntactic sugar for
calling an anonymous function:

– These both evaluate e1 to v1, then evaluate e2 in an
environment extended to map x to v1

– So exactly the same evaluation of expressions and result

But in ML, there is a type-system difference:
– x on the left can have a polymorphic type, but not on the right

– Can always go from right to left
– If x need not be polymorphic, can go from left to right

Summer 2019 12CSE341: Programming Languages

let val x = e1
in e2 end

(fn x => e2) e1

What about performance?

According to our definition of equivalence, these two functions are
equivalent, but we learned one is awful

– (Actually we studied this before pattern-matching)

Summer 2019 13CSE341: Programming Languages

fun max xs =
case xs of
[] => raise Empty

| x::[] => x
| x::xs’ =>

if x > max xs’
then x
else max xs’

fun max xs =
case xs of
[] => raise Empty

| x::[] => x
| x::xs’ =>

let
val y = max xs’

in
if x > y
then x
else y

end

Different definitions for different jobs

• PL Equivalence (341): given same inputs, same outputs and effects
– Good: Lets us replace bad max with good max

– Bad: Ignores performance in the extreme

• Asymptotic equivalence (332): Ignore constant factors

– Good: Focus on the algorithm and efficiency for large inputs

– Bad: Ignores “four times faster”

• Systems equivalence (333): Account for constant overheads,
performance tune

– Good: Faster means different and better

– Bad: Beware overtuning on “wrong” (e.g., small) inputs; definition
does not let you “swap in a different algorithm”

Claim: Computer scientists implicitly (?) use all three every (?) day

Summer 2019 14CSE341: Programming Languages

