
1

PROLOG:
Programming in Logic

Prolog is a language for automatic theorem
proving.

Suppose we have

P(a)

P(x) Q(x) for all x

and want to prove Q(a) .

In Prolog

| p(a) .

| q(x) : -- p(x)

| ? -- q(a) .

yes

P.1
How do theorem provers work

They use predicate logic.

They input axioms, rules, and a theorem to be
proved.

They employ techniques of pattern matching.

They perform a search to determine a sequence
of

axioms
rules
intermediate results

that prove the theorem.

P.2

2

Predicate Logic

constants a, b, c, 123, -6.5, John, Mary

variables x, y, z

functions f, g, h, broiled

predicates P, Q, R, S, EATS, LOVES, SLEEPS

P(a, 123)

LOVES(John, Mary)

EATS(Mary, broiled(x))

Sleeps(John)

logic operators V, , ,

quantifiers (for every)

(there exists)

 x y EATS(y) SLEEPS(Y)

 LOVES(x, y)

V

P.3

A

E

A E V V

Examples

1) man(Marcus)

2) Pompeian(Marcus)

3) born(Marcus, 40)

4) x man(x) mortal(x)

5) x Pompeian(x) died(x, 79)

6) erupted(volcano, 79)

7) x t1 t2 mortal(x) born(x, t1)

 gt(t2 - t1, 150) dead(x, t2)

8) now = 1998

9) x t [alive(x, t) dead(x, t)]

 [dead(x, t) alive(x, t)]

10) x t1 t2 died(x, t1) gt(t2, t1)

 dead(x, t2)

A

A

A

A A V

V

A A

AA VA

P.4

V

3

Resolution theorem provers work with clauses
that are derived from arbitrary predicate calculus
expressions.

PROLOG works with a restricted kind of
clauses called

Horn Clauses

which have three possible forms:

1) P Q

2) P1 P2 ….. Pk Q

3) P

If we group 1) and 2) together there are two
ways to represent knowledge in PROLOG

• rules

• facts

V VV

P.5
Resolution theorem provers produce an
explosion of unnecessary results while trying
to prove a theorem.

Prolog, with its restricted clause forms, is
GOAL-ORIENTED.

Its control strategy is a straightforward
BACKTRACKING SEARCH.

GOAL

ALT1 ALT2 ALTn

…..

SG11 SG12 SG1n1….

ALT111 ALT112 ALT113

etc.

top-level goal

Possible
alternative
rules or
facts

possible
alternatives of
first subgoal.

Subgoals of
first
alternative

P.6

4

A Simple Example

knows_prolog(X) : - had_prolog_before(X).

knows_prolog(X) : - teaching_prolog(X).

knows_prolog(X) : - learns_prolog(X), programs(X).

learns_prolog(mary).

programs(mary).

Goal: knows_prolog(mary)

had_prolog_before teaches_prolog
 (mary) (mary)

X X

 learns_prolog programs
 (mary) (mary)
 OK OK

and

P.7

What is Prolog?

• Prolog is a relational language.

• The Prolog programmer designs objects and
 relations over objects.

• The statements of the language are
 declarative, not imperative.

• It is more than just a language;
 it is a theorem prover.

What do Prolog programs do?

They declare facts about objects and their
relationships.

They define rules about objects and their
relationships.

They ask questions about objects and their
relationships.

P.8

5

FACTS

Facts are relations on objects that are known to be
true.

leftof(redcircle, bluestar).

ta(joanna).
ta(patricia).

triangle(p1, p2, p3).

madeof(moon, greencheese).

The Prolog system works with symbols, like Lisp.

The symbols have no particular meaning to
Prolog, only to the programmer.

The facts in a Prolog program form a database.

P.9

A fact has the syntax

< relation name >(< argument list >).*

A relation may have a variable number of
arguments.

 address(bill, seattle, washington).

 address(mary, seattle, washington, 98195).

Facts don’t have to make sense.

 address(tom, blue, triangle, dog)

But they ought to mean something to the
programmer.

* Some Prologs use Lisp format

 (< relation name > < arguments >)

P.10

6

QUERIES

Suppose the database of facts is:

| teaches(shapiro, cse341).
| teaches(notkin, cse341).
| teaches(young, cse322).
| teaches(hanks, cse 473).

Then we can query the system and Prolog will
search for a match to our queries, starting at the
top.

| ? - teaches(notkin, cse341) .
 yes

| ? - teaches(young, cse341) .
 no

| ? - teaches(notkin, bluecheese) .
 no

| ? - teaches(watermelon, strawberries) .
 no

P.11

Facts are about relations on objects which are
constants.

Queries can also contain variables.

| ? - teaches(shapiro , X) .
 X = cse341

| ? - teaches(X , cse341) .
 X = shapiro ; X = notkin ; no

Queries with variables are called existential
queries in logic.
The query

teaches(shapiro , X) .

corresponds to asking Prolog to prove the
theorem

X: teaches(shapiro , X)

Prolog proves the theorem by searching the
database to find a matching fact.

P.12

E

7

Conjunctive Queries

Queries may have several terms.

The terms may share variables.

The query is solved in left-to-right order.

The query succeeds only if ALL the terms succeed.

owns(glen , stereo) .

owns(glen , car) .

owns(glen , tv).

type(stereo , machine) .

type(car , vehicle) .

type(tv , machine) .

type(computer , machine) .

| ? - owns(glen , X) , type(X , machine) .

 X = stereo ; X = tv ; no

P.13 R U L E S

Rules define new relationships in terms of existing ones.

A rule has the syntax

< head > : - < body >.

The head contains 1 predicate.

The body is a conjunction of predicates, separated by
commas.

bird(X) : - animal(X), haswings(X) .

means X(animal(X) haswings(X) bird(X))

can be read

“ X is a bird if X is an animal

 and X has wings.

Sister(X, Y) : - female(X) ,

 sameparents(X , Y) ,

 notequal(X , Y).

A V

P.14

8

USING RULES TO ANSWER QUERIES

male(albert) .

male(edward) .

female(alice) .

female(victoria) .

parents(edward , victoria , albert) .

parents(alice , victoria , albert) .

sisterof(X , Y) : - female(X) ,

parents(X , M , F) ,
parents(Y , M , F) .

| ? - sisterof(alice , edward) .
 yes

| ? - sisterof(alice , X) .
X = edward

| ? - sisterof(alice , alice) .
yes

P.15

RECURSIVE RULES

parent(john , mary) .

parent(mary , bill) .

parent(bill , sue) .

ancestor(X , Y) : - parent(X , Y) .

ancestor(X , Y) : - parent(X , Z) ,

 ancestor(Z , Y) .

| ? - ancestor(john , sue) .

 Parent(john , sue) X

 parent(john, Z) , ancestor(Z , sue)

 parent(john , mary) , ancestor(mary , sue)

parent(mary , sue) X

 parent(mary , Z) , ancestor(Z , sue)

 parent(mary , bill) , ancestor(bill , sue)

parent(bill , sue)

yes

P.16

