
1

C U T S

• A  cut  prunes or “cuts  out” an unexplored
part of a Prolog search tree.

• Cuts can make a computation more efficient
by eliminating futile search and
backtracking.

• Cuts are controversial because they are
impure.

• A cut is written as  “ ! ” .

When a rule
B  : -   C1 , ... , Cj-1 , ! , Cj+1 , ... , Ck

is applied, the cut tells control to backtrack
past
Cj-1 , . . . , C1 , and  B  without considering
any more rules for them.

P.50 Example with CUTS

age(leah, 48) .
age(natalie, 30) .
age(octavia, 34) .
age(darrell, 59) .
age(michael, 8) .
age(sue, 15) .
age(sylvia, 81) .
age(loren, 29) .
age(lura, 87) .
age(ron, 60) .

blond(leah) .
blond(natalie) .
blond(octavia) .
brunette(darrell) .
brunette(michael) .
redhair(sylvia) .
redhair(loren) .
redhair(sue) .
grayhair(lura) .
grayhair(ron) .

cast(X)  :-   age(X, A) ,  satisfactory(X, A) .
satisfactory(X, A)  :-   between(0, 10, A) , !,  blond(X) .
satisfactory(X, A)  :-   between(11, 20, A) ,  !,  redhair(X) .
satisfactory(X, A)  :-   between(20, 50, A) ,  !,  brunette(X) .
satisfactory(X, A)  :-   between (50, 90, A) ,  !,  grayhair(X) .

This eliminates some needless search.

P.51



2

Cut + Fail achieve Negation

not( X )  :-  X,  !,  fail
not( _ ) .

Fail is a system predicate that fails.
_ is a wild-card variable.

The first rule attempts to satisfy  X .  If  X
fails, then the second rule succeeds,
because  _  unifies with any term.

If  X  succeeds, then the fail predicate
forces failure, and the cut prevents
consideration of the second rule.

Note that if   not ( X )  succeeds, it merely
means that  X  is not provable according to
the database.

X  may or may not be actually false.

P.52 Another Cut/Fail Combination Example

allow(elephant)  :-  !, fail .

allow(Animal)  :-   size(Animal, lessthan50),
       license(Animal).

allow(Animal)  :-   lives(Animal, cage) .

meaning

If an animal is not an elephant and either
weights less than 50 pounds and has a license
or lives in a cage, it is allowed.

Elephants, even small ones that live in cages,
are not allowed.

P.53



3

Gathering Answers into Bags or Sets

The predicates bagof and setof are used to gather instances
of objects.

We specify a goal, a variable in the goal, and a bag or set
name.

For each success of the goal, the constant that matched this
variable is gathered into the bag or set.

Example

parent( jan, bet ) .
parent( jan, cat ) .
parent( joe, ann ) .
parent( joe, cat ) .

|?-    bagof( Child, parent( jan, Child ), B ) .

        B = [ bet, cat ]

read “there exists Who”

|?-    bagof( Child, Who^ ( parent ( Who, Child ) ), B ) .

        B = [ bet, cat, ann, cat ]

|?-    setof( Child, P^( parent ( P, Child ) ), S ) .

        S = [ ann, bet, cat ]

P.54

Dynamic Knowledge Assertion/Retraction

Prolog provides built in functions to work with
Horn Clauses.

You can

1)  Construct a structure representing a clause

2)  add a clause to the database

3)  remove a clause from the database

         *  All Prolog structures have the form
functor ( arguments )

Facts are already in this form.  To convert a rule to
this form

       P(X1, …, Xn)  :-   Q1(X1, …, Xn), Qa( · ·), · · ·Qx( ··· )

converts to

       ' :- ' (P(X 1, .., Xn), ' , ' (Q1( · · ), Qa( ·· ·),  · · ·Qk( ··) ) )

example:    ' :- '( cat(X) ,  ', '( animal(X), furry(X) ) )

P.55



4

Some Utilities for Dynamic Knowledge

read/write

read( T ) reads a term  T  from the input 
stream.

write( T ) writes a term  T  to the output 
stream.

listing

listing( A ) writes out all clauses with atom  A
as their predicate to the output 
stream.

functor

functor( T, F, N ) succeeds if  T  is a structure
with functor  F  and arity N.
( If  T  is a variable, it 
constructs such a structure.)

arg

arg( Num, T, Argument ) puts Argument into
structure  T  as 
argument number
Num.

P.56
assert

assert{  }( C ) adds clause  C  to the 
database at the

   {           .

retract

retract( C ) removes the first clause that 
matches  C  from the database.

Example

     new_fact  :-    read( A1),  read( A2 ),  read( A3 ),
    functor( C,  A3,  2 ),                       

        arg( 1, C,  A1 ),                        
    arg( 2, C,  A2 ),                       
    assert( C ) .

This rule reads 3 terms; uses functor to set up a
structure named  C  with  A3 as its predicate, and
room for 2 arguments;  uses arg to make  A1  and  A2
the arguments; and asserts it.

P.57

q
z

beginning
end



5

  |?-   new_fact.

  |:     bob.

  |:     mike.

  |:     father.

  yes

  |?-   new_fact.

  |:     mauro.

  |:     nick.

  |:     father.

  yes

  |?-   listing( father ) .

        father( bob, mike ).

        father( mauro, nick ).

        yes

P.58
Call

A call event occurs when Prolog starts trying to satisfy a
goal.

You can also invoke call dynamically, like assert.

Example

      check_fact  :-    read( B1 ),  read( B2 ),  read( B3 ), 
      functor( D, B3, 2 ),

    arg( 1, D, B1 ),                                        
    arg(2, D, B2 ),                                  
    call( D ).

|?-   check_fact.

|:     bob.

|:     mike.

|:     father.
yes

|?-    check_fact.

|:      mauro.

|:      mike.
|:      father.

no

P.59



6

The Univ Operator   = ..

This is the easiest and clearest way to construct
dynamic assertions and calls.

--  The predicate   f(a, b, c)  corresponds
     to the list  [ f, a, b, c ] .

--  The operator   =..  converts back and
     forth between the two representations.

?-  f(a, b, c)  =..  X .
     X = [ f, a, b, c ]
     yes

?-  X  =..  [ w, x, y, z ] .
     X  =  w(x, y, z) .
     yes

P.60 Using   =..   To Construct Dynamic Calls

mother(linda, sylvia) .
father(linda, aaron) .

answer_questions  :-                                 
write(’mother or father?’) ,
read(X) ,
write(’of whom?’) ,
read(Y) ,
Q =.. [X, Y, Who] ,                                     
call(Q) ,                                                    
write(Who) ,
nl .

1  ?-  answer_question.
mother or father? mother .
of whom? linda .
sylvia
Yes

2  ?-  answer_question.
mother or father? father .
of whom? linda.
aaron
Yes

P.61



7

Using  =..  To Construct Dynamic Asserts

fact   :-   F =..   [dog, sierra],                                  
 assert(F),                                               
 write(ok),
 nl.

rule   :-   R  =..  [ ’ :- ’, animal(X), dog(X)], 
 assert(R),                                     
 write(ok), 
 nl.

comprule    :-   C  =..  [ ’ , ’ , dog(X), waggingtail(X)],
            S  =..  [ ’ :- ’ , friendly(X), C],
            assert(S),                                       
            write(ok),
            nl.

2  ?-  fact . ok       yes
3  ?-  rule . ok       yes
4  ?-  comprule. ok       yes
5  ?-  consult(user).
|:  waggingtail(sierra) .

6  ?-  dog(Who) .
Who  =  sierra

8  ?-  friendly(Who) .
Who  =  sierra

P.62 Clause

Clause  provides another way of selecting Horn clauses.

Clause( X, Y ) succeeds if it can match  X  
and  Y  to the head and 
body of an existing clause 
in the database.

X  must be instantiated 
enough so that the main 
predicate is known.  
Only works for dynamically asserted
clauses!!

Example

list1( X )  :-    clause( X, Y ),                   
         output_clause( X, Y ),
         write( ' ·  ' ), nl, fail.

list1( X ).

output_clause( X, true )  :-   !, write( X ).

output_clause( X, Y )  :-    write( ( X  :-  Y ) ).

Note that for facts, the tail is true.

Ex. assert( q ( a, b ) ).

list1( q ( V1, V2 ) ) .

P.63



8

Parsing  Simple  English  Sentences

article(a).  article(the).  adjective(giant).
preposition(on).  preposition(from).
verb(rose).  verb(sat).  verb(was).
noun(cat).  noun(rocket).  noun(mat).  noun(pad).

sentence( X )  :-  np( X, R ),  vp( R, [ ] ).

np( [X,Y|Z], Z )  :-   article( X ),  noun( Y ).

vp( [X|Y], R )  :-   verb( X ),  pp( Y, R ).

pp( [X|Y], Z )  :-   preposition( X ), np( Y, Z ).

|?-   sentence( [the, cat, sat, on, the, mat] ).

|?-   sentence( [the, rocket, was, on, the, pad] ).

|?-   sentence( [the, mat, was, on, the, cat] ).

|?-   sentence( [the, rocket, rose] ).

|?-   sentence( [the, giant, cat, rose, from, the, mat]).

P.64


