University of Washington

The Hardware/Software Interface
CSE351 Winter 2011

Module 2: Memory

CSE351 - Winter 2011 1

University of Washington

Today’s topics

¢ Part |: Brief hardware overview

¢ Partll: Memory
* Memory and its bits, bytes, and integers

* Representing information as bits
* Bit-level manipulations

- Boolean algebra

- Boolean algebrain C

¢ Part lll: Addresses / Pointers / C Arrays

CSE351 - Winter 2011 2

University of Washington

Part I: Hardware Overview

CSE351 - Winter 2011 3

University of Washington

Hardware: Logical View

Memory

\ Bus

D
@ Net USB Etc.

CSE351 - Winter 2011 4

Hardware: Semi-Logical View

’

Intel* Core™2 Duo Processor
Intel® Core™2 Quad Processor

‘ 10.6 GB/s
PCl Express* 2.0 16 lanes

Siphics 16 GB/s DORZ or DDR3
or 6.4 GB/s or 8.5 GB/'s
PCl Express* 2.0 8 lanes
Graphics 8 GE/s DDRZ or DDR3
6.4 GBfs or 8.5 GB/s
PCl Express* 2.0 8 lanes
Graphics B GB/s

- Intel* High
12 Hi-Speed USB 2.0 Ports; RelliilE] Definition Audi
Dual EHCI; USB Port Disable ——

Intel’ Quiet System
Technology

3

6 Serial ATA Ports; eSATA;
Port Disable

Intel® Integrated h

10/100/1000 MAC Intel* Matrix

Storage Technaology

. Intel® Turbo Memory
o
Intel® Gigabit LAN Connect BIOS Support with User Pinning

Intel* Extreme Tui

University of Washingt

Support L] ptional
J/
Intel® P45 Express Chipset Block Diagram
CSE351 - Winter 2011 5
University of Washington
Hardware: Physical View
PCI-Express Shots
1 PCI-E X186, 2 PCI-E X1 Back Panel Connectors
Socket 775
Core2 Quad/

CSE351 - Winter 2011

Core2 Extreme
Ready

Intel P45
Chipsat
Intel ICH10
" cr-ipHset DDR2
1086+MHz
Dual Channal
Memory Slots
Sarial ATA
Headars
Parallel Port FJ-45 Gigablt LAN Port
P52 Mouse
Port Audio Ports
P52 Keyboard
Port

Senial Port USB 2.0 Ports

Performance: It's Not Just CPU Speed

» Data and instructions reside in memory
¢ To execute an instruction, it must be fetched onto the CPU

¢ Then, the data the instruction operates on must be fetched onto the CPU

e CPU <> Memory bandwidth can be a limiting factor to performance

e Improving performance 1: hardware improvements to increase
memory bandwidth (e.g., DDR - DDR2 - DDR3)

* Improving performance 2: move less data into/out of the CPU

— Put some “memory” on the CPU chip

— The next slide is just an introduction. We'll see a more full explanation
later in the course.

CSE351 - Winter 2011 7

University of Washington

CPU “Memory”: Registers and Instruction Cache

Transparent
(hw controlled)
instruction
caching

_—

Instruction

\ Memor
Cache | Program Y

controlled
data
movement

e There are a fixed number of registers on the CPU
» Registers hold data
* There is an I-cache on the CPU holding recently fetched instructions

» If you execute a loop that fits in the cache, the CPU goes to memory for
those instructions only once, then executes out of its cache

CSE351 - Winter 2011 8

University of Washington

Part Il: Introduction to Memory

Hardware Memory Organization
Memory and C Data Types

CSE351 - Winter 2011 9

University of Washington

Binary, Everywhere
¢ Why binary?
* Easy to store with bi-stable elements

* Reliably transmitted on noisy and inaccurate wires

0 ' 1 ' 0o~

3.3V —
2.8V —

0.5V —
0.0V —

¢ Memory contains a very long bit array:
§ 000000010101111101100010100011101010100100...0,

¢ Everything stored in memory is represented by some bit string

§ Numbers, characters, instructions, objects, ...

CSE351 - Winter 2011 10

Hexadecimal Notation (“Hex")

* Humans aren't very good at reading binary strings

N
.)

* A better / more compact notation for a ot ec',\“‘, \(\fz@
length 4 binary string is a hexadecimal 5 00 ;())oo
(base 16) digit 111 |oo001

2 | 2 | 0010

+ Example: 1100, C, 313 10011
4| 4] 0100

5] 5] 0101

6 | 6| 0110

* Bit strings of length 4N can be written 7 1710111
.. 8 | 8 [1000

as N hex digits 991001
A [10] 1010

+ Example: 0010010011000000, < 24C0, B [11] 1011
Cc [12] 1100

. - R D [13] 1101
In C, you indicate hex by prefixing with '0x E 11211110

~ 0x24C0 or 0x24c0 F 1151 1111

CSE351 - Winter 2011 11

University of Washington

Using Memory
To fetch a data item from memory, the CPU must specify:

e An address: where do the start?

* Alength: how long is the item?

There is a minimum length that can be fetched: 8 bits

» Abyte is an string of 8 consecutive bits

Addresses refer to a byte offset, not a bit offset
e Address 4 means fetch starting at byte 4 in memory (not bit 4)
¢ The amount fetched is restricted to some small number of bytes

» Typically: 1, 2, 4, or 8 bytes

CSE351 - Winter 2011 12

University of Washington

Machine Words

¢ CPUs have a “word size”

§ Thisis the width of the registers (measured in bits)
- Nominal size of an integer

- Also the number of bits in an addresses

¢ All reasonably recent Intel/AMD processors are 64-bit hardware

§ However, some software (including operating systems) written for 32-bit processors
won't work when the word size is 64-bits

§ We'll see a bit about why in a moment
§ The processors can run in 32-bit mode...

¢ The main benefit of larger word size is bigger addresses - larger physical memories
§ With a 32 bit word/register, the largest possible address is 4G

§ Limits memory to 4GB
§ With 64 bit word/register, the potential address space ~ 1.8 X 10* bytes
§ x86-64 hardware supports 48-bit addresses: 256 TB

CSE351 - Winter 2011 13

University of Washington

Word-Oriented Memory Organization

64-bit 32-bit

¢ Addresses always specify Words Words Bytes Addr.
locations of bytes in memory 0000
§ Address of first byte in word Addr 0001
§ Addresses of successive words 0000 0002
differ by 4 (32-bit) or 8 (64-bit) Addr 0003
. 0000 0004
¢ It's possible to fetch less than Addr 0005
a word, or perhaps more than 00=04 0006
one word 0007
§ E.g.,abyte s 0008
§ E.g., a double-word = 0009
& 0010
00_08 0012
0012 0014
0015 N

CSE351 - Winter 2011

University of Washington

Byte Ordering

¢ How should bytes within multi-byte word be ordered in
memory?
¢ Conventions

§ Big-endian: Sun, PPC Mac, Internet
§ Least significant byte has highest address

§ Little-endian: x86
§ Least significant byte has lowest address

¢ Example
* Variable has 4-byte representation 0x01234567

* Address of variable is 0x100
0x100 0x101 0x102 0x103

BigEndian|__[o [23]asfe]| [|
. . 0x100 0x101 Ox102 0x103
Little Endian | [[67 | a5 | 23 | o1 | [|

CSE351 - Winter 2011 15

University of Washington

Data Representations
Data Types / Sizes (in bytes)

unsigned char

short Short int

float float

double double

CSE351 - Winter 2011 16

University of Washington

Example C program

int main(int argc, char* argv[]) {
int 1i; // give me 4 bytes of memory, call it 'i'
char c¢; // give me 1 byte of memory, call it 'c'
float f; // give me 4 bytes of memory, call it 'f'

// type checking happens in the compiler, not the hardware.
// C is very “generous” about type conversions

f =1; // okay, Jjust like in Java
i=f; // sort of okay in both C and Java
i=c; // totally okay in C; not okay in java

// (means set i1 to the bit string formed
// by appending the 8-bits of ¢ to 24
// leading bits of zeroes

c = 1i; // Also okay in C!
// Set the 8 bits of ¢ to the low order
// 8 bits of i

i="'A"; // Also okay in C...
}

CSE351 - Winter 2011 17

University of Washington

“Live” Example

#include <stdio.h>

int main() {
int 1 = 256*8 + 'A'; 000000000000000000100001000101‘
printf("i = %d\n", i); @
char ¢ = 1i; c
printf ("c = %c\n", c); 0100 0101

$.Ja.out
i=2113
c=A

CSE351 - Winter 2011 18

University of Washington

Boolean Operations on Bits

¢ All data is bits (no matter what types have been declared)
¢ Sometimes it's useful to operate on bits, using boolean operators:
§ Think of a 1 bit as true, and a 0 as false

§ AND: A&B =1 when both Ais 1 and Bis 1
§ OR:A|B=1wheneitherAis1orBis1
§ XOR: AMB =1 when either Ais 1 or Bis 1, but not both
§ NOT: ~A =1 when Ais 0 and vice-versa
§ DeMorgan’s Law: ~(A | B) = ~A & ~B
~(A&B)="~A | ~B
&[0 1 1|0 Ao 1 ~|
0 ‘ 00 0 } 0 1 0 } 0 1 } 1
1/0 1 1 111 0 10

S Qe o 1

University of Washington

General Boolean Algebras

¢ Operate on bit vectors
§ Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 A 01010101 ~ 01010101
01000001 01111101 00111100 10101010

¢ All of the properties of Boolean algebra apply

01010101
201010101

00000000

CSE351 - Winter 2011 20 20

Representing & Manipulating Sets

¢ Representation
§ Width w bit vector represents subsets of {0, ..., w—1}
§ a=1lifjcA
01101001{0,3,5,6}
76543210

01010101{0,2,4,6}

76543210
¢ Operations
& Intersection 01000001 {0,6}
| Union 01111101 {0,2,3,4,5,6}
A Symmetric difference 00111100 {2,3,4,5}
~ Complement 10101010 {1,3,5,7}

CSE351 - Winter 2011 21 2

University of Washington

Bit-Level Operations in C

¢ Operations &, |, , ~ are available in C
§ Apply to any “integral” data type
long, int, short, char, unsigned
§ View arguments as bit vectors
§ Arguments applied bit-wise
¢ Examples (char data type)

§ ~0x41 --> O0xBE
~01000001, --> 10111110,

§ ~0x00 --> OxFF
~00000000, --> 11111111,

§ 0x69 & 0x55 --> O0x41
01101001, & 01010101, --> 01000001,

§ 0x69 | 0x55 --> 0x7D
01101001, | 01010101, --> 01111101,

CSE351 - Winter 2011 22 22

University of Washington

Contrast: Logic Operations in C

¢ Contrast to logical operators

§ s, | 1,!
§ View 0 as “False”

§ Anything nonzero as “True”

§ Always return Oor 1

§ Early termination (aka short-circuit evaluation)

¢ Examples (char data type)
10x41 --> 0x00
10x00 --> 0x01
110x41 --> 0x01

0x69 && 0x55 --> 0x01
0x69 || 0x55 --> 0x01
P && *p++ (avoids null pointer access, null pointer = 0x00000000)

CSE351 - Winter 2011 23 23

University of Washington

Other (non-Boolean) Bit Operations: Shifting

* The bits in a word can be shifted

* When shifting left, zero bits are shifted in from the right, bits “shifted
off” the left end are lost

- 01011101, <<2 is 01110100,

* When shifting right, there are two possibilities:

Logical shift: shift in zeros from the left

Arithmetic shift: repeat the high-order bit (We'll see why later)

e Cuses arithmetic right shift

Examples:
01011101, >>2 is 00010111, (for both arithmetic and logical)
11011010,>>2 is 00110110, (logical)

11110110, (arithmetic)

CSE351 - Winter 2011 24

Using Shifts and Masks

¢ Extract 2nd most significant byte of a 32-bit integer
§ First shift: x>> (2 * 8)
§ Then mask: (x >> 16) & OxFF

X 01100001{01100010/01100011 01100100

x>>16 00000000 00000000 01100001{01100010

00000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010

(x>>16) & OxFF

CSE351 - Winter 2011 25 s

University of Washington

HW1 Sample Question

/*

* replaceByte(x,n,c) - Replace byte n in x with c

* Bytes numbered from 0 (LSB) to 3 (MSB)

* Examples: replaceByte(0x12345678,1,0xab) = 0x1234ab78
* You can assume 0 <= n <= 3 and 0 <= c <= 255

* Legal ops: ! ~ & ~ | + << >>

* Max ops: 10

b Rating: 3

*/

int replaceByte(int x, int n, int c) {
return 2;

}

CSE351 - Winter 2011 26

University of Washington

HW1 Sample Question Answer

/*

* replaceByte(x,n,c) - Replace byte n in x with c

* Bytes numbered from 0 (LSB) to 3 (MSB)

* Examples: replaceByte (0x12345678,1,0xab) = 0x1234ab78
* You can assume 0 <= n <= 3 and 0 <= c <= 255

* Legal ops: ! ~ & ~ | + << >>

* Max ops: 10

b Rating: 3

*/

int replaceByte(int x, int n, int c) {
/* Mask out current byte value and OR in replacement */
int n8 = n << 3;
int mask = 0xff << n8;
int cshift = ¢ << n8;
return (x & ~mask) | cshift;

CSE351 - Winter 2011 27

University of Washington

Part Ill: Addresses / Pointers / C Arrays

CSE351 - Winter 2011 28

University of Washington

A new data type: Addresses / Pointers

¢ An address names a location in memory

¢ A pointer is a data object
that contains an address

¢ the value 351 (0Ox15F) is stored

at address 0004 100 00 01 F 8882
¢ Pointer to address 0004 0008
stored at address 001C ;’ 000C
¢ Pointer to a pointer ‘ 5000 00 T oc 8812
at 0024 0018
¢ The value 12 is stored »[00 00 00 04] go1cC
at address 0014 ‘? 0020

~{ 00 00 00 1C| Q024

§ Isita pointer?

CSE351 - Winter 2011 29 2

University of Washington

Why Have a Pointer Data Type?
e Whenyousay'int x;'ina program, you're both asking for 4-
bytes of storage and giving those bytes a name: x

e Suppose you allocate memory at run time:

p = new int; // this isn't how you write this in C
* What does 'p' name?

* How do you name the storage just allocated?

CSE351 - Winter 2011 30

University of Washington

C Pointers

e int* p;
means “give me 4 bytes of storage; call it p. I'm going to use it to hold the address of
int's (i.e., as an address of a 4-byte integer)”

e p = new int; // not how you write this in C!
allocates 4 bytes when executed, and assigns the address of those 4 bytes to p.

e The 4 bytes for p were reserved at compile time 00 00 00 24 8882
0008

e The 4 bytes for the new int is found at run time ‘ 000C
| 0010

* Note: the new space_isn't initialized | 0014
| 0018

* Note: if you now do 'p=0;', 001C
there is no name for the new int \‘ 0020
PP PP 0024

e “memory leak”

CSE351 - Winter 2011 31

Using Pointers

* The name 'p' means 'the 4-bytes allocated for the pointer'

* inti=p;
would assign the pointer (address) to the integer i

* The operator '*' de-references the pointer

* inti=*p;
assigns the value pointed at by p to i

* The operator '&' takes the address of something

* p=4&i
assigns the address of the memory reserved foritop

e p=&%*p; // Thisisn't useful. It's just an example.
takes the address of the memory pointed at by p and assigns it to p —
i.e., assigns p to p.

CSE351 - Winter 2011 32

Pointer Assignment

* int*p;
int* q;
p = new int; // not actual C...
q=p;

* pand q are aliases for the new'ed memory

CSE351 - Winter 2011 33

University of Washington

Arrays

Arrays represent adjacent locations in memory storing the same type of data object
Example: int big_array[128];
B allocates 128*4 = 512 adjacent bytes in memory (e.g., starting at 0x00ff0000)

You can't point to an array, only to an element, but... consecutive elements are in contiguous memory

int * p;

p = &big_array[0]; 0x00ff0000

p = big_array; 0x00ff0000

p = &big_array[3]; 0x00ff000c

p = big_array +3; 0x00ff000C (adds 3 * size of int)

[1is an operator
p = big_array;
p[31=4; //same as big_array[3] = 4;

Array names are like pointers.

Pointers are just addresses.

-» There is no array bound checking

-> In fact, there's no general way to determine the length of an array!

big_array[130] = 1;
is legal, executes, but has undetermined result

CSE351 - Winter 2011 3 3

University of Washington

Representing Strings
char S[6] = "12345";
¢ StringsinC
§ Represented by array of characters

§ Each character encoded in ASCII format S

§ Standard 7-bit encoding of character set 31
§ Fits into 8 bits with a leading 0 ;g

§ Character “0” has code 0x30 34
§ Digiti has code 0x30+ 3(5)

§ String must be null-terminated
§ Final character = 0x00

¢ Unicode characters — up to 4 bytes/character

§ ASCII codes still work (leading 0 bit) but can support the many characters
in all languages in the world

§ Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

. 35
CSE351 - Winter 2011 35

University of Washington

Pointers and Java

class test {

public int testInt = 0;

public static void main(String args([]) {
int x =0; » What does this print?
int y;
« Why?
test tl = new test();
test t2;

y = %;
x = 2;
System.out.println("y = " + y);

t2 = tl;
tl.testInt = 2;
System.out.println("t2.testInt = " + t2.testlInt);

CSE351 - Winter 2011 36

University of Washington

Java References

* InJava, “almost all” variables are in fact pointers

t1
* Javaterminology is reference testint
. . . . 2]
* Assignment is pointer assignment 2
* You're simply creating an alias Assignment copies
the reference.
* On the other hand, for efficiency
reasons, variables of primitive types
are not references
X
2
Assignment copies
y the value.
0

CSE351 - Winter 2011 37

University of Washington

Java Strings

class testStr {

public static void main(String args[]) {
String strl = "Test string";
String str2 = strl;

strl = strl.concat (" modified");
System.out.println("str2 = " + str2);
System.out.println("strl = " + strl);

* What does this print?

« Why?

CSE351 - Winter 2011 38

University of Washington

Java Strings (Are Special) String objects

class testStr { str1
. . “Test string”
public static void main(String args[]) {
String strl = "Test string"; str2
String str2 = strl;
strl = strl.concat (" modified"); “Test string
_ modified”
System.out.println("strl = " + strl);
System.out.println("str2 = " + str2);

» What does this print?

« Why?

CSE351 - Winter 2011 39

