

University of Washington

CSE351 - Winter 2011 1

The Hardware/Software Interface
CSE351 Winter 2011

Module 2: Memory

University of Washington

CSE351 - Winter 2011 2

Today�s topics

¢ Part I: Brief hardware overview
¢ Part II: Memory

� Memory and its bits, bytes, and integers

� Representing information as bits

� Bit-level manipulations

� Boolean algebra

� Boolean algebra in C

¢ Part III: Addresses / Pointers / C Arrays

2

University of Washington

CSE351 - Winter 2011 3

Part I: Hardware Overview

University of Washington

CSE351 - Winter 2011 4

Hardware: Logical View

CPU Memory

Bus

Disks Net USB Etc.

University of Washington

CSE351 - Winter 2011 5

Hardware: Semi-Logical View

University of Washington

CSE351 - Winter 2011 6

Hardware: Physical View

University of Washington

CSE351 - Winter 2011 7

Performance: It's Not Just CPU Speed

� Data and instructions reside in memory

� To execute an instruction, it must be fetched onto the CPU

� Then, the data the instruction operates on must be fetched onto the CPU

� CPU Û Memory bandwidth can be a limiting factor to performance

� Improving performance 1: hardware improvements to increase

memory bandwidth (e.g., DDR DDR2 DDR3)� �

� Improving performance 2: move less data into/out of the CPU

� Put some �memory� on the CPU chip

� The next slide is just an introduction. We'll see a more full explanation

later in the course.

University of Washington

CSE351 - Winter 2011 8

CPU �Memory�: Registers and Instruction Cache

� There are a fixed number of registers on the CPU

� Registers hold data

� There is an I-cache on the CPU holding recently fetched instructions

� If you execute a loop that fits in the cache, the CPU goes to memory for

those instructions only once, then executes out of its cache

Instruction
Cache

Registers

Memory
Program
controlled

data
movement

Transparent
(hw controlled)

instruction
caching

CPU

University of Washington

CSE351 - Winter 2011 9

Part II: Introduction to Memory

Hardware Memory Organization
Memory and C Data Types

University of Washington

CSE351 - Winter 2011 10

Binary, Everywhere
¢ Why binary?

� Easy to store with bi-stable elements

� Reliably transmitted on noisy and inaccurate wires

¢ Memory contains a very long bit array:

§ 000000010101111101100010100011101010100100...0
2

¢ Everything stored in memory is represented by some bit string

§ Numbers, characters, instructions, objects, ...

10

University of Washington

CSE351 - Winter 2011 11

Hexadecimal Notation (�Hex�)

� Humans aren't very good at reading binary strings

� A better / more compact notation for a

length 4 binary string is a hexadecimal

(base 16) digit

� Example: 1100
2
 Û C

16

� Bit strings of length 4N can be written

as N hex digits

� Example: 0010010011000000
2
 Û 24C0

16

� In C, you indicate hex by prefixing with '0x'

� 0x24C0 or 0x24c0

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Bin
ary

University of Washington

CSE351 - Winter 2011 12

Using Memory
� To fetch a data item from memory, the CPU must specify:

� An address: where do the start?

� A length: how long is the item?

� There is a minimum length that can be fetched: 8 bits

� A byte is an string of 8 consecutive bits

� Addresses refer to a byte offset, not a bit offset

� Address 4 means fetch starting at byte 4 in memory (not bit 4)

� The amount fetched is restricted to some small number of bytes

� Typically: 1, 2, 4, or 8 bytes

• • •

00���0

FF�
��F

University of Washington

CSE351 - Winter 2011 13

Machine Words
¢ CPUs have a �word size�

§ This is the width of the registers (measured in bits)
� Nominal size of an integer

� Also the number of bits in an addresses

¢ All reasonably recent Intel/AMD processors are 64-bit hardware

§ However, some software (including operating systems) written for 32-bit processors

won't work when the word size is 64-bits

§ We'll see a bit about why in a moment

§ The processors can run in 32-bit mode...

¢ The main benefit of larger word size is bigger addresses larger physical memories�

§ With a 32 bit word/register, the largest possible address is 4G

§ Limits memory to 4GB

§ With 64 bit word/register, the potential address space » 1.8 X 1019 bytes

§ x86-64 hardware supports 48-bit addresses: 256 TB

13

University of Washington

CSE351 - Winter 2011 14

Word-Oriented Memory Organization

¢ Addresses always specify

locations of bytes in memory

§ Address of first byte in word

§ Addresses of successive words

differ by 4 (32-bit) or 8 (64-bit)

¢ It's possible to fetch less than

a word, or perhaps more than

one word

§ E.g., a byte

§ E.g., a double-word

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit

Words
Bytes Addr.

0012
0013
0014
0015

64-bit

Words

Addr

=

??

Addr

=

??

Addr

=

??

Addr

=

??

Addr

=

??

Addr

=

??

0000

0004

0008

0012

0000

0008

14

University of Washington

CSE351 - Winter 2011 15

Byte Ordering
¢ How should bytes within multi-byte word be ordered in

memory?

¢ Conventions

§ Big-endian: Sun, PPC Mac, Internet
§ Least significant byte has highest address

§ Little-endian: x86
§ Least significant byte has lowest address

¢ Example
� Variable has 4-byte representation 0x01234567

� Address of variable is 0x100

15

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian 01 23 45 67

67 45 23 01Little Endian

University of Washington

CSE351 - Winter 2011 16

Data Representations

16

Java Data Type C Data Type Typical 32-bit x86-64

boolean 1 1

byte unsigned char 1 1

char char 1 1

short Short int 2 2

int int 4 4

float float 4 4

long int 4 8

double double 8 8

long long long 8 8

Data Types / Sizes (in bytes)

University of Washington

CSE351 - Winter 2011 17

Example C program

int main(int argc, char* argv[]) {

int i; // give me 4 bytes of memory, call it 'i'

char c; // give me 1 byte of memory, call it 'c'

float f; // give me 4 bytes of memory, call it 'f'

// type checking happens in the compiler, not the hardware.

// C is very �generous� about type conversions

f = i; // okay, just like in Java

i = f; // sort of okay in both C and Java

i = c; // totally okay in C; not okay in java

// (means set i to the bit string formed

// by appending the 8-bits of c to 24

// leading bits of zeroes

c = i; // Also okay in C!

// Set the 8 bits of c to the low order

// 8 bits of i

i = 'A'; // Also okay in C...

}

University of Washington

CSE351 - Winter 2011 18

�Live� Example

#include <stdio.h>

int main() {

 int i = 256*8 + 'A';

 printf("i = %d\n", i);

 char c = i;

 printf("c = %c\n", c);

 return 0;

}

$./a.out
i = 2113
c = A

0000 0000 0000 000 000 1000 0100 0101

0100 0101

i

c

University of Washington

CSE351 - Winter 2011 19

Boolean Operations on Bits

¢ All data is bits (no matter what types have been declared)

¢ Sometimes it's useful to operate on bits, using boolean operators:

§ Think of a 1 bit as true, and a 0 as false

§ AND: A&B = 1 when both A is 1 and B is 1

§ OR: A|B = 1 when either A is 1 or B is 1

§ XOR: A^B = 1 when either A is 1 or B is 1, but not both

§ NOT: ~A = 1 when A is 0 and vice-versa

§ DeMorgan�s Law: ~(A | B) = ~A & ~B

 ~(A&B) = ~A | ~B

CSE351 - Autumn 2010 19

University of Washington

CSE351 - Winter 2011 20

General Boolean Algebras

¢ Operate on bit vectors
§ Operations applied bitwise

¢ All of the properties of Boolean algebra apply

 01101001

& 01010101

 01000001

 01101001

| 01010101

 01111101

 01101001

^ 01010101

 00111100

~ 01010101

 10101010 01000001 01111101 00111100 10101010

20

 01010101

^ 01010101

 0011110000000000

University of Washington

CSE351 - Winter 2011 21

Representing & Manipulating Sets

¢ Representation

§ Width w bit vector represents subsets of {0, �, w�1}

§ a
j
 = 1 if j Î A

01101001 { 0, 3, 5, 6 }

76543210

01010101 { 0, 2, 4, 6 }

76543210

¢ Operations
& Intersection 01000001 { 0, 6 }

| Union 01111101 { 0, 2, 3, 4, 5, 6 }

^ Symmetric difference 00111100 { 2, 3, 4, 5 }

~ Complement 10101010 { 1, 3, 5, 7 }

21

University of Washington

CSE351 - Winter 2011 22

Bit-Level Operations in C

¢ Operations &, |, ^, ~ are available in C

§ Apply to any �integral� data type

long, int, short, char, unsigned

§ View arguments as bit vectors

§ Arguments applied bit-wise

¢ Examples (char data type)

§ ~0x41 --> 0xBE

~01000001
2

--> 10111110
2

§ ~0x00 --> 0xFF

~00000000
2

--> 11111111
2

§ 0x69 & 0x55 --> 0x41

01101001
2
 & 01010101

2
 --> 01000001

2

§ 0x69 | 0x55 --> 0x7D

01101001
2
 | 01010101

2
 --> 01111101

2

22

University of Washington

CSE351 - Winter 2011 23

Contrast: Logic Operations in C

¢ Contrast to logical operators

§ &&, ||, !

§ View 0 as �False�

§ Anything nonzero as �True�

§ Always return 0 or 1

§ Early termination (aka short-circuit evaluation)

¢ Examples (char data type)

!0x41 --> 0x00

!0x00 --> 0x01

!!0x41 --> 0x01

0x69 && 0x55 --> 0x01

0x69 || 0x55 --> 0x01

p && *p++ (avoids null pointer access, null pointer = 0x00000000)

23

University of Washington

CSE351 - Winter 2011 24

Other (non-Boolean) Bit Operations: Shifting

� The bits in a word can be shifted

� When shifting left, zero bits are shifted in from the right, bits �shifted

off� the left end are lost

� 01011101
2
 << 2 is 01110100

2

� When shifting right, there are two possibilities:

� Logical shift: shift in zeros from the left

� Arithmetic shift: repeat the high-order bit (We'll see why later)

� C uses arithmetic right shift

� Examples:

� 01011101
2
 >> 2 is 00010111

2
 (for both arithmetic and logical)

11011010
2
 >> 2 is 00110110

2
 (logical)

 11110110
2
 (arithmetic)

University of Washington

CSE351 - Winter 2011 25

Using Shifts and Masks

¢ Extract 2nd most significant byte of a 32-bit integer

§ First shift: x >> (2 * 8)

§ Then mask: (x >> 16) & 0xFF

25

01100001 01100010 01100011 01100100 x

00010000x >> 16

00011000
(x >> 16) & 0xFF

0001000000000000 00000000 01100001 01100010

0001100000000000 00000000 00000000 11111111

00000000 00000000 00000000 01100010

University of Washington

CSE351 - Winter 2011 26

HW1 Sample Question

/*

 * replaceByte(x,n,c) - Replace byte n in x with c

 * Bytes numbered from 0 (LSB) to 3 (MSB)

 * Examples: replaceByte(0x12345678,1,0xab) = 0x1234ab78

 * You can assume 0 <= n <= 3 and 0 <= c <= 255

 * Legal ops: ! ~ & ^ | + << >>

 * Max ops: 10

 * Rating: 3

 */

int replaceByte(int x, int n, int c) {

 return 2;

}

University of Washington

CSE351 - Winter 2011 27

HW1 Sample Question Answer

/*

 * replaceByte(x,n,c) - Replace byte n in x with c

 * Bytes numbered from 0 (LSB) to 3 (MSB)

 * Examples: replaceByte(0x12345678,1,0xab) = 0x1234ab78

 * You can assume 0 <= n <= 3 and 0 <= c <= 255

 * Legal ops: ! ~ & ^ | + << >>

 * Max ops: 10

 * Rating: 3

 */

int replaceByte(int x, int n, int c) {

 /* Mask out current byte value and OR in replacement */

 int n8 = n << 3;

 int mask = 0xff << n8;

 int cshift = c << n8;

 return (x & ~mask) | cshift;

}

University of Washington

CSE351 - Winter 2011 28

Part III: Addresses / Pointers / C Arrays

University of Washington

CSE351 - Winter 2011 29

A new data type: Addresses / Pointers

¢ An address names a location in memory

¢ A pointer is a data object

that contains an address

¢ the value 351 (0x15F) is stored

at address 0004

¢ Pointer to address 0004

stored at address 001C

¢ Pointer to a pointer

at 0024

¢ The value 12 is stored

at address 0014

§ Is it a pointer?

29

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04000000

1C000000

5F010000

0C000000

University of Washington

CSE351 - Winter 2011 30

Why Have a Pointer Data Type?

� When you say 'int x;' in a program, you're both asking for 4-

bytes of storage and giving those bytes a name: x

� Suppose you allocate memory at run time:

 p = new int; // this isn't how you write this in C

� What does 'p' name?

� How do you name the storage just allocated?

University of Washington

CSE351 - Winter 2011 31

C Pointers

� int* p;

means �give me 4 bytes of storage; call it p. I'm going to use it to hold the address of

int's (i.e., as an address of a 4-byte integer)�

� p = new int; // not how you write this in C!

allocates 4 bytes when executed, and assigns the address of those 4 bytes to p.

� The 4 bytes for p were reserved at compile time

� The 4 bytes for the new int is found at run time

� Note: the new space isn't initialized

� Note: if you now do 'p=0;',

there is no name for the new int

� �memory leak�

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024????????

24000000p

University of Washington

CSE351 - Winter 2011 32

Using Pointers

� The name 'p' means 'the 4-bytes allocated for the pointer'

� int i =p;

would assign the pointer (address) to the integer i

� The operator '*' de-references the pointer

� int i = *p;

assigns the value pointed at by p to i

� The operator '&' takes the address of something

� p = &i;

assigns the address of the memory reserved for i to p

� p = &*p; // This isn't useful. It's just an example.

takes the address of the memory pointed at by p and assigns it to p �

i.e., assigns p to p.

University of Washington

CSE351 - Winter 2011 33

Pointer Assignment

� int* p;

int* q;

p = new int; // not actual C...

q = p;

� p and q are aliases for the new'ed memory

p

q

University of Washington

CSE351 - Winter 2011 34

Arrays

¢
Arrays represent adjacent locations in memory storing the same type of data object

Example: int big_array[128];

�
allocates 128*4 = 512 adjacent bytes in memory (e.g., starting at 0x00ff0000)

¢
You can't point to an array, only to an element, but... consecutive elements are in contiguous memory

 int * p;

p = &big_array[0]; 0x00ff0000

p = big_array; 0x00ff0000

p = &big_array[3]; 0x00ff000c

p = big_array + 3; 0x00ff000c (adds 3 * size of int)

¢
 [] is an operator

 p = big_array;

 p[3] = 4; // same as big_array[3] = 4;

¢
Array names are like pointers.

Pointers are just addresses.

 There is no array bound checking�

 In fact, there's no general way to determine the length of an array!�

big_array[130] = 1;

is legal, executes, but has undetermined result

34

University of Washington

CSE351 - Winter 2011 35

char S[6] = "12345";

Representing Strings

¢ Strings in C
§ Represented by array of characters

§ Each character encoded in ASCII format

§ Standard 7-bit encoding of character set

§ Fits into 8 bits with a leading 0`

§ Character �0� has code 0x30

§ Digit i has code 0x30+ i

§ String must be null-terminated
§ Final character = 0x00

¢ Unicode characters � up to 4 bytes/character
§ ASCII codes still work (leading 0 bit) but can support the many characters

in all languages in the world

§ Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

S

33

34

31

32

35

00

35

University of Washington

CSE351 - Winter 2011 36

Pointers and Java

class test {

 public int testInt = 0;

 public static void main(String args[]) {

 int x =0;

 int y;

 test t1 = new test();

 test t2;

 y = x;

 x = 2;

 System.out.println("y = " + y);

 t2 = t1;

 t1.testInt = 2;

 System.out.println("t2.testInt = " + t2.testInt);

 }

}

� What does this print?

� Why?

University of Washington

CSE351 - Winter 2011 37

Java References

� In Java, �almost all� variables are in fact pointers

� Java terminology is reference

� Assignment is pointer assignment

� You're simply creating an alias

� On the other hand, for efficiency

reasons, variables of primitive types

are not references

t1

t2

2
testInt

Assignment copies
the reference.

2

0

x

y
Assignment copies
the value.

University of Washington

CSE351 - Winter 2011 38

Java Strings

class testStr {

 public static void main(String args[]) {

 String str1 = "Test string";

 String str2 = str1;

 str1 = str1.concat(" modified");

 System.out.println("str2 = " + str2);

 System.out.println("str1 = " + str1);

 }

}

� What does this print?

� Why?

University of Washington

CSE351 - Winter 2011 39

Java Strings (Are Special)

class testStr {

 public static void main(String args[]) {

 String str1 = "Test string";

 String str2 = str1;

 str1 = str1.concat(" modified");

 System.out.println("str1 = " + str1);

 System.out.println("str2 = " + str2);

 }

}

� What does this print?

� Why?

str1
�Test string�

str2

�Test string
modified�

String objects

