The Hardware/Software Interface

CSE351 Winter 2011

Module 4: Floating Point (but nearly nothing about C pointers)

Today Topics: Floating Point

- [¢] Background: Fractional binary numbers
- **¢** IEEE floating point standard: Definition
- **¢** Example and properties
- Rounding, addition, multiplication
- **¢** Floating point in C
- ¢ Summary

CSE351 - Autumn 2010

2

University of Washington

University of Washington

Fractional Binary Numbers: Examples

University of Washington

5 5

6 6

University of Washington

 Value 	Representation	
5 and 3/4	101.11	
2 and 7/8	10.111	
0 and 23/32	0.10111	

Limitation	
• Even given a numbers of	an arbitrary number of bits, can only exactly represent the form $x/2k$
Other ration	nal numbers have repeating bit representations
Value	Representation
1/3	0.0101010101[01]
1/5	0.001100110011[0011]

Fixed Point Representation

- float \rightarrow 32 bits; double \rightarrow 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8 bit floating point numbers as an example
 - #1: the binary point is between bits 2 and 3
 b₇ b₆ b₅b₄ b₃ [.] b₂ b₁ b₀
 - #2: the binary point is between bits 4 and 5
 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
 - The position of the binary point affects the range and precision
 - range: difference between the largest and smallest representable numbers

University of Washington

- precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

- Pros
 - It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of b_0
- Cons
 - There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision. The more you have of one, the less of the other
- Fixing fixed point representation: floating point
- Do that in a way analogous to "scientific notation"
 - Not 12000000, but 1.2 x 10⁷ Not 0.0000012, but 1.2 x 10⁻⁶

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic

University of Washington

10 10

- Main idea: make numerically sensitive programs portable
- · Specifies two things: representation and result of floating operations
- IEEE 754 now supported by all major CPUs

Driven by numerical concerns

- Numerical analysts predominated over hardware designers in defining standard
- Nice standards for rounding, overflow, underflow, but...
 - But... hard to make fast in hardware
- · Float operations can be an order of magnitude slower than integer

	University of Washington
Floating Point Representation	
 Numerical Form: (-1)^s M 2^E Sign bit s determines whether number is negative or positional significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional value in rational significand (mantissa) M normally a fractional significand (mantissa) M normally a fractional significand (mantissa) M normal significand (mantissa)	tive ange [1.0,2.0).
 Encoding MSB s is sign bit s frac field <u>encodes</u> M (but is not equal to M) exp field <u>encodes</u> E (but is not equal to E) 	
s exp frac	
	11 11

	University of Washington			
Precisions				
• Single precision: 32 bit	s (largest value: about 3.4 x 10 ³⁸)			
s exp fra	ac			
1 8	23			
• Double precision: 64 b	its (largest value: about 1.8 x 10 ³⁰⁸)			
s exp fr	ac			
1 11	52			
• Extended precision: 80 bits (Intel only) (largest: about 1.2 x 10 ⁴⁹³²)				
s exp fr	ac			
1 15	63 or 64			
	11			

	· · · ·
Floating Point and the Programmer	
<pre>#include <stdio.h></stdio.h></pre>	
<pre>int main(int argc, char* argv[]) {</pre>	
<pre>float f1 = 1.0; float f2 = 0.0; int i; for (i=0; i<10; i++) { f2 += 1.0/10.0; }</pre>	
<pre>printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2); printf("f1 = %10.8f\n", f1); printf("f2 = %10.8f\n\n", f2);</pre>	<pre>\$./a.out 0x3f800000 0x3f800001 f1 = 1.000000000 f2 = 1.000000119</pre>
f1 = 1E30; f2 = 1E-30; float f3 = f1 + f2; printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");	f1 == f3? yes
return 0; }	

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation
 - E.g., 0.1
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute differing results
- NEVER test floating point values for equality!

University of Washington