The Hardware/Software Interface

CSE351 Winter 2011

Module 4: Floating Point
(but nearly nothing about C pointers)

Today Topics: Floating Point

\$ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
\$ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

(Abstract) Fractional binary numbers

¢ What is 1011.101?

Fractional Binary Numbers

¢ Representation
§ Bits to right of "binary point" represent fractional powers of 2
§ Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Fractional Binary Numbers: Examples

- Value

Representation
5 and 3/4
2 and 7/8
0 and 23/32
101.11
10.111
0.10111

Issue \#1: Representable Numbers

- Limitation
- Even given an arbitrary number of bits, can only exactly represent numbers of the form $x / 2 k$
- Other rational numbers have repeating bit representations
- Value

1/3
1/5
1/10

Representation
0.0101010101[01]
$0.001100110011[0011]$
0.0001100110011 [0011]

Fixed Point Representation

- float $\rightarrow 32$ bits; double $\rightarrow 64$ bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
- "fixed point binary numbers"
- Let's do that, using 8 bit floating point numbers as an example
- \#1: the binary point is between bits 2 and 3
$b_{7} b_{6} b_{5} b_{4} b_{3}$ [.] $b_{2} b_{1} b_{0}$
- \#2: the binary point is between bits 4 and 5 $b_{7} b_{6} b_{5}[.] b_{4} b_{3} b_{2} b_{1} b_{0}$
- The position of the binary point affects the range and precision
- range: difference between the largest and smallest representable numbers
- precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

- Pros
- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
- In fact, the programmer can use ints with an implicit fixed point
- E.g., int balance; // number of pennies in the account
- ints are just fixed point numbers with the binary point to the right of b_{0}
- Cons
- There is no good way to pick where the fixed point should be
- Sometimes you need range, sometimes you need precision. The more you have of one, the less of the other
- Fixing fixed point representation: floating point
- Do that in a way analogous to "'scientific notation"
- Not 12000000, but 1.2×10^{7} Not 0.0000012 , but 1.2×10^{-6}

Floating Point

- Abstractly, floating point is analogous to scientific notation
- Decimal:
- Not 12000000, but 1.2×10^{7} Not 0.0000012, but 1.2×10^{-6}
- Binary:
- Not 11000.000, but 1.1×2^{4}

Not 0.000101 , but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
- the sign (1 bit)
- the significand
- the exponent

IEEE Floating Point

- IEEE Standard 754
- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- IEEE 754 now supported by all major CPUs

- Driven by numerical concerns

- Numerical analysts predominated over hardware designers in defining standard
- Nice standards for rounding, overflow, underflow, but...
- But... hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer

Floating Point Representation

- Numerical Form:

$(-1)^{5} M 2^{8}$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

- Encoding

- MSB \boldsymbol{s} is sign bit s
- frac field encodes M (but is not equal to M)
- \exp field encodes E (but is not equal to E)

s	\exp	frac

Precisions

- Single precision: $\mathbf{3 2}$ bits (largest value: about 3.4×10^{38})

- Double precision: 64 bits
(largest value: about 1.8×10^{308})

s	\exp		frac
$\mathbf{1}$	$\mathbf{1 1}$		$\mathbf{5 2}$

- Extended precision: $\mathbf{8 0}$ bits (Intel only) (largest: about 1.2×10^{4932})

s	\exp		frac
$\mathbf{1}$	$\mathbf{1 5}$		$\mathbf{6 3}$ or $\mathbf{6 4}$

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
- 0.011×2^{5} and 1.1×2^{3} represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1 , don't bother to store it
- Special values:
- The float value 00 ... 0 represents zero
- If the exp $==11 \ldots 1$ and the mantissa $==00 \ldots 0$, it represents ∞
- E.g., $10.0 / 0.0 \rightarrow \infty$
- If the $\exp ==11 \ldots 1$ and the mantissa != 00 ... 0 , it represents NaN
- "Not a Number"
- Results from operations with undefined result

$$
\text { - E.g., } 0 * \infty
$$

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {
        f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```


Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
- Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation
- E.g., 0.1
- Can also lose precision, unlike ints
- "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute differing results
- NEVER test floating point values for equality!

