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Module 5: Instruction Set Architectures
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Today Topics: Instruction Set Architectures

� ISA Goals
� ISA Design Decisions

� x86 ISA overview
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Preliminaries 1

� We're going to talk very generally

� What does an ISA look like?

� What design decisions must be made?

� What are the factors affecting those decisions?

� We'll talk about specifics of the Intel x86 architecture in more 

detail later
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The General ISA
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General ISA Design Decisions

� Instructions

� What instructions are available? What do they do?

� How are then encoded?

� Registers

� How many registers are there?

� How wide are they?

� Memory

� How do you specify a memory location?
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Preliminaries 2

� The goal of the CPU is to execute programs quickly

� The time required to execute a program depends on:

� The program (as written in C, for instance)

� The compiler: what set of assembler instructions it translates the C 

program into

� The ISA: what set of instructions it made available to the compiler

� The hardware implementation: how much time it takes to execute an 

instruction

� There is a complicated interaction among these
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CISC vs. RISC

� CISC: Complicated Instruction Set Processor

RISC: Reduced Instruction Set Processor

� CISC's have complicated instructions

� Each one does a lot, so is slow to execute, but...

� A smart compiler can generate machine code that requires only a 

relatively small number of instruction executions

� RISC's have small, regular instruction sets

� Each instruction does only something very simple, so is fast, but...

� A relatively large number of instruction executions are required to 

complete the program
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A trivial CISC vs. RISC example

� x = x + A[y+2]

� CISC

� addl  8(r1, r2, 4), r3

� r1: pointer to A

r2: y

r3: x

� meaning: add the 32-bits at address (r1) + 4*(r2) + 8 to r3

� RISC

� sll       r2, 2, r4    # r4 = y*4

addi   r4, 8, r4    # r4 += 8

load   0(r4), r4    # r4 = A[y+2]

add     r4, r3, r3  # add A[y+2] to x

� Which is faster?
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CISC vs. RISC: Which is faster?

� The answer isn't obvious

� It depends on what C code programmers write, what machine code compilers can 

generate, and how fast hardware that implements the ISA can be

� Extensive analysis of these factors indicates that the RISC wins

� Why?

� A side effect of being able to execute some complicated instructions is that simple 

instructions on the CISC execute more slowly than on the RISC

� Simple instructions are common; complicated ones are rare

� Complicated instructions interfere with parallelizing the execution of the 

instruction stream
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Preliminaries 3

� This tradeoff wasn't understood when the x86 architecture was designed

� The prevailing wisdom was that the more that could be done in hardware, the faster the 

machine

� So, the x86 is a CISC

� Can't change the ISA because too many installed programs rely on it

� If buying a new computer required that you re-purchase Microsoft Word, you might not 

buy a new computer

� (What Intel did: the hardware compiles the x86 CISC program into a RISC 

program �on the fly,� and the hardware implements the (hidden) RISC ISA.)
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The Upshot

� The book talks a lot about the particulars of the x86 ISA

� The x86 is hugely important, of course

� But, the details aren't that important to the typical programmer

� The book then simplifies to the y86 architecture

� The y86 is basically a RISC subset of the x86
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The x86 ISA

� Main abstractions

� Instructions

� Executed by the CPU

� Data

� Memory and registers

PC

...

Registers

Memory

CPU
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x86 ISA Part 1
Instructions
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Instructions

� There are three kinds of instructions

� Data transformation

� Examples: and, or, shift, add, subtract, multiply, divide, �

� Data copy

� Example: move

� Conditionals

� Example: most jumps, some moves

Aside: An unconditional jump is simply an assignment to the PC.  So,
it's either a data copy or perhaps a data transformation instruction.

The key functionality we need is an operation whose outcome depends
on a test � a conditional.
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Conditional Control Flow

� Two things are required:

� Evaluate a condition

� Example: compare [R1] with [R2]

� Either branch or continue execution sequentially depending on the 

outcome of the condition

� Examples: equal, not equal, less than, less than or equal, not less 

than (greater than or equal), �
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Evaluating the Condition

� The result of the condition evaluation must be put somewhere

� We could use a register, but registers are valuable

� And on the x86 there are only 8 of them!

� (And on the x86 there are only 6 of them!)

� Instead, we use a special register, the condition code

� The condition code is a bit mask: overflow, sign, carry, parity, and 

zero bits

� These bits are available when performing arithmetic operations, and 

it's cheap to save them to the condition code, so the x86 does

� C code fragment:  x = x + y; if ( x != 0 ) ...

� Rather than   add r3,r4  need only   add r3,r4
         cmp r4,$0          bz  skip

         bz  skip
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Evaluating the Condition (cont.)

� As well as being set as a side-effect of arithmetic instructions, 

there is a set of compare instructions whose only action is to set 

the condition code

� An arithmetic operation writes some register

� Registers are valuable!

� The cmp instruction compares and sets the condition code bits, but 

doesn't alter any registers

� Lessons for later: 

� Registers are valuable!

� The x86 has only 8 of them!
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Encoding Branches

� The y86 (and z86) architectures encode branches using 32-bit 

absolute addresses

� There is a 1 byte opcode

� There is a 4 byte absolute address

� There are two problems with that:

� The instruction takes a lot of bytes

� You need to know the absolute address of the branch at assembly time

� Why might it be impossible to know the absolute address at assembly 

time?
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Encoding Branches (cont.)

� Both problems can be (mostly) solved using PC relative addressing

� Instead of giving a 32-bit absolute address, give an 8- or 16-bit offset from the current PC

� 8 bits: can branch between -127 and +128 bytes from current PC

� 16 bits: can branch between -32,768 and +32,767 bytes away

� Most branches are within those ranges

� Note that we don't need to know where the code will be loaded in memory at 

assembly time

� The OS will set the PC to the first instruction of the program, before starting it

� PC relative encoded branches will all work, no matter where the code is loaded
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PC Relative Addressing

0x100     cmp  r2, r3     0x1000

0x102     je   0x70       0x1002

0x104     �               0x1004

�         �               � 

0x172     add  r3, r4     0x1072

� PC relative branches are relocatable

� Absolute branches are not
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Conditionals and Control Flow

� A test / conditional branch is sufficient to implement most 

control flow constructs offered in higher level languages

� if (condition) then {...} else {�}

� while(condition) {�}

� do {�} while (condition)

� for (initialization; condition; ) {...}

� (Unconditional branches implemented some related control 

flow constructs

� break, continue)
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Compiling Loops

          C/Java code

while ( sum != 0 ) {

   <loop body>

}

         Machine code

loopTop:   cmp  r3, $0

           be   loopDone

               <loop body code>

           jmp loopTop

loopDone:

� How to compile other loops should be clear to you

� The only slightly tricky part is to be sure where the conditional branch 

occurs: top or bottom of the loop

� Q: How is for(i=0; i<100; i++) implemented?

� Q: How are break and continue implemented?
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The switch statement

� At first glance, switch doesn't

conform to our notion of �either

take the branch or not�

� It's not a binary decision, it's n-ary

� switch can be re-written as an if-then-else

� transforms it into n binary decisions

� there is sometimes an optimized implementation available 

to the compiler

� jump tables

switch (class) {

  case 0: <some code>

          break;

  case 1: <some code>

          break;

  case 4: <some code>

          break;

�

  default: <some code>

           break;

}
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switch / jump tables

� A jump table is an array of addresses

� Each address points to an instruction

� In the case of switch, the jump table

entries point to the sections of code 

for the case's

� To implement the switch:

� use the selector (class, in the example) as an index into the jump table

� load the 32-bit address from the jump table into a register, say r3

� jmp r3

� This is an unconditional jump

� The PC is assigned the contents of r3

switch (class) {

  case 0: <some code>

          break;

  case 1: <some code>

          break;

  case 4: <some code>

          break;

�

  default: <some code>

           break;

}
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jump table picture

switch (class) {

  case 0: <some code>

          break;

  case 1: <some code>

          break;

  case 4: <some code>

          break;

  default: <some code>

           break;

}

0

1
2
3
4
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switch / jump table review

switch (switch) {

  case 0:     <some code>

              break;

  case 1:     <some code>

              break;

  case 52000: <some code>

              break;

  default:    <some code>

              break;

}

Why is the compiler unlikely to implement this as a jump table?
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switch aside

int x, y, z, class;

�

switch (class) {

  case x:     <some code>

              break;

  case y:     <some code>

              break;

  case z: <some code>

              break;

  default:    <some code>

              break;

}

Why is this not legal (in most languages)?
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x86 ISA Part 2
Data
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x86 Data

� Programmer controlled data is held in registers and memory

� The ISA says registers are 32-bits wide

� The ISA says that memory:

� is byte addressable

� allows transfers of 1, 2, 4 bytes into / out of registers

� The �names� for data are defined by the ISA, not the 

programmer

� registers 0 � 7

� memory locations 0, 1, 2, �
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Types

� There is some notion of type defined by the ISA

� byte vs. word

� integer vs. float

� However, the type is not associated with the data

� It's associated with the operation being performed on the data

� add  8(r2), r3    vs.   fadd 8(r2), f3

� There is no notion of type checking

� What might type checking mean at the hardware level?

� Why would you not implement that?
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Addressing memory

� Instructions that use memory have to specify an address

� Embedding addresses into instructions has two drawbacks

� Instructions are big: an address is 32 bits

� You have to know the address at assembly time

� You don't if the code wants to 'new' up an object, say

� You don't if you're not sure just where the code will be loaded into memory

� You don't if only part of the code is compiled at a time

� In C, it's routine to compile just one file of a program that is composed of dozens 

of files

� The compiler sees only the code in that file, not the whole program, so cannot 

decide where in memory code or data will be located

� Resolving this particular issue is the job of the linker.  We'll come back to it later.
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Addressing Memory (continued)

� The most general memory addressing scheme is to indirect 

using a register

� The instruction names a register that holds the address

� mrmovl  (r2), r3

� An arbitrary (and arbitrarily long) sequence of instructions can be used 

to compute the address

� That works, but you end up needing either

� a lot of registers, each pointing at a variable currently used frequently, 

or

� a single register but a lot of instructions (re)computing addresses you 

need frequently 
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Addressing Memory (cont.)

� Base-displacement addressing provides more flexibility

� mrmovl  $8(r2), r3

� effective address is 8 + R[r2]

� Example use of base-displacement addressing: arrays

� Array access with an index known at compile time

� A[2]

� r2 points at array A;  the offset of element 2 is 8
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Array Addressing

� It isn't that common to know the array index at compile time

� A[j] is more common than A[2]

� The x86 supports this too, meaning it provides a way to create the required 

effective address without using extra registers or extra instructions

� (r2, r5, 4)

� r2 points to A

� r5 holds j (you needed that in a register anyway)

� 4 is the size of each element of the array, in bytes

� effective address is R[r2] + R[r5]*4

� This is very CISC...

� x86 even supports A[j+2]

� 8(r2,r5,4)
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Back to base-displacement addressing...

� Simple (RISC-y) base-displacement addressing is useful beyond 

arrays

� Distinct variables that the compiler knows it has allocated 

contiguously can be addressed using a single register

� int i, j, k;

� r2 points to i; $4(r2) is j;  $8(r2) is k

� Note that the compiler knows the offsets of the variables at compile time

� Note that it isn't essential that it know the value of the �base�  (r2) � it 

can generate instructions to set that up at run time

� Note that only a single base register allows access to a large number of 

distinct variables
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C structs

� C provides a user-defined, structured data type: the struct

� struct { 

   int accountNumber;

   int balance;  // in pennies

} account;

� That actually creates a variable, named account, of the struct type, but there's a 

way to define the type and then declare many instances of it as well

� Note that if I have a pointer to account in r2, say:

� 0(r2) points to account.accountNumber

� 4(r2) points to account.balance

� This idea is how the C++ compiler generates instructions to access the 

instance variables of objects  (C++ has classes...)
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C: User defined types

� C's facility for defining types is really just an aliasing facility

� typedef unsigned char byte;

� You can now type 'byte' anywhere 'unsigned char' would have made sense

� typedef  struct { 

   int accountNumber;

   int balance;  // in pennies

} AccountType;

AccountType accounts[200];

� Define a type (AccountType),, then create an array of elements of that type

� Type equivalence in C is by name

� So, an element of array accounts is not the same type as variable 'account' on the previous slide (even 

though the struct definitions are identical)

� accounts[0] is of type 'AccountType'

� account is of type 'struct <anonymous>'

� When types are compatible, struct assignment is defined (as bit copy)

� accounts[0] = accounts[10];  // is legal

� This is �shallow copy�, in 142/3 terminology
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x86 ISA Part III
ISA Abstractions v. HLL Abstractions
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Overview

� You know a lot about Java

� You also know a bit about C, and how much of it is a lot like Java

� You know the essentials about what hardware does

� Let's look at the programming abstractions Java/C provide and 

compare with what the hardware provides

� Anything not provided by the hardware must be being provided by 

software, e.g., the compiler
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HLL vs. HW
� Let's divide the discussion into three parts:

� things in C I don't understand (e.g., because they're not legal in Java)

� statements, operators, and control flow

� data / variables #include <stdio.h>

int N = 16;

int fib(int n) {
  int result;
  if ( n == 0 ) result = 0;
  else if ( n == 1 ) result = 1;
  else result = fib(n-1) + fib(n-2);
  return result;
}

int main(int argc, char* argv[]) {
  int result = fib(N);
  printf("Fibonnaci[%d] = %d\n", N, result);
  return 0;
}


