

University of Washington

1

The Hardware/Software Interface
CSE351 Winter 2011

Module 5: Instruction Set Architectures

University of Washington

2

Today Topics: Instruction Set Architectures

� ISA Goals
� ISA Design Decisions

� x86 ISA overview

2

University of Washington

3

Preliminaries 1

� We're going to talk very generally

� What does an ISA look like?

� What design decisions must be made?

� What are the factors affecting those decisions?

� We'll talk about specifics of the Intel x86 architecture in more

detail later

University of Washington

4

The General ISA

PC

...

Registers

Instructions

Memory

Data

CPU

University of Washington

5

General ISA Design Decisions

� Instructions

� What instructions are available? What do they do?

� How are then encoded?

� Registers

� How many registers are there?

� How wide are they?

� Memory

� How do you specify a memory location?

University of Washington

6

Preliminaries 2

� The goal of the CPU is to execute programs quickly

� The time required to execute a program depends on:

� The program (as written in C, for instance)

� The compiler: what set of assembler instructions it translates the C

program into

� The ISA: what set of instructions it made available to the compiler

� The hardware implementation: how much time it takes to execute an

instruction

� There is a complicated interaction among these

University of Washington

7

CISC vs. RISC

� CISC: Complicated Instruction Set Processor

RISC: Reduced Instruction Set Processor

� CISC's have complicated instructions

� Each one does a lot, so is slow to execute, but...

� A smart compiler can generate machine code that requires only a

relatively small number of instruction executions

� RISC's have small, regular instruction sets

� Each instruction does only something very simple, so is fast, but...

� A relatively large number of instruction executions are required to

complete the program

University of Washington

8

A trivial CISC vs. RISC example

� x = x + A[y+2]

� CISC

� addl 8(r1, r2, 4), r3

� r1: pointer to A

r2: y

r3: x

� meaning: add the 32-bits at address (r1) + 4*(r2) + 8 to r3

� RISC

� sll r2, 2, r4 # r4 = y*4

addi r4, 8, r4 # r4 += 8

load 0(r4), r4 # r4 = A[y+2]

add r4, r3, r3 # add A[y+2] to x

� Which is faster?

University of Washington

9

CISC vs. RISC: Which is faster?

� The answer isn't obvious

� It depends on what C code programmers write, what machine code compilers can

generate, and how fast hardware that implements the ISA can be

� Extensive analysis of these factors indicates that the RISC wins

� Why?

� A side effect of being able to execute some complicated instructions is that simple

instructions on the CISC execute more slowly than on the RISC

� Simple instructions are common; complicated ones are rare

� Complicated instructions interfere with parallelizing the execution of the

instruction stream

University of Washington

10

Preliminaries 3

� This tradeoff wasn't understood when the x86 architecture was designed

� The prevailing wisdom was that the more that could be done in hardware, the faster the

machine

� So, the x86 is a CISC

� Can't change the ISA because too many installed programs rely on it

� If buying a new computer required that you re-purchase Microsoft Word, you might not

buy a new computer

� (What Intel did: the hardware compiles the x86 CISC program into a RISC

program �on the fly,� and the hardware implements the (hidden) RISC ISA.)

University of Washington

11

The Upshot

� The book talks a lot about the particulars of the x86 ISA

� The x86 is hugely important, of course

� But, the details aren't that important to the typical programmer

� The book then simplifies to the y86 architecture

� The y86 is basically a RISC subset of the x86

University of Washington

12

The x86 ISA

� Main abstractions

� Instructions

� Executed by the CPU

� Data

� Memory and registers

PC

...

Registers

Memory

CPU

University of Washington

13

x86 ISA Part 1
Instructions

University of Washington

14

Instructions

� There are three kinds of instructions

� Data transformation

� Examples: and, or, shift, add, subtract, multiply, divide, �

� Data copy

� Example: move

� Conditionals

� Example: most jumps, some moves

Aside: An unconditional jump is simply an assignment to the PC. So,
it's either a data copy or perhaps a data transformation instruction.

The key functionality we need is an operation whose outcome depends
on a test � a conditional.

University of Washington

15

Conditional Control Flow

� Two things are required:

� Evaluate a condition

� Example: compare [R1] with [R2]

� Either branch or continue execution sequentially depending on the

outcome of the condition

� Examples: equal, not equal, less than, less than or equal, not less

than (greater than or equal), �

University of Washington

16

Evaluating the Condition

� The result of the condition evaluation must be put somewhere

� We could use a register, but registers are valuable

� And on the x86 there are only 8 of them!

� (And on the x86 there are only 6 of them!)

� Instead, we use a special register, the condition code

� The condition code is a bit mask: overflow, sign, carry, parity, and

zero bits

� These bits are available when performing arithmetic operations, and

it's cheap to save them to the condition code, so the x86 does

� C code fragment: x = x + y; if (x != 0) ...

� Rather than add r3,r4 need only add r3,r4
 cmp r4,$0 bz skip

 bz skip

University of Washington

17

Evaluating the Condition (cont.)

� As well as being set as a side-effect of arithmetic instructions,

there is a set of compare instructions whose only action is to set

the condition code

� An arithmetic operation writes some register

� Registers are valuable!

� The cmp instruction compares and sets the condition code bits, but

doesn't alter any registers

� Lessons for later:

� Registers are valuable!

� The x86 has only 8 of them!

University of Washington

18

Encoding Branches

� The y86 (and z86) architectures encode branches using 32-bit

absolute addresses

� There is a 1 byte opcode

� There is a 4 byte absolute address

� There are two problems with that:

� The instruction takes a lot of bytes

� You need to know the absolute address of the branch at assembly time

� Why might it be impossible to know the absolute address at assembly

time?

University of Washington

19

Encoding Branches (cont.)

� Both problems can be (mostly) solved using PC relative addressing

� Instead of giving a 32-bit absolute address, give an 8- or 16-bit offset from the current PC

� 8 bits: can branch between -127 and +128 bytes from current PC

� 16 bits: can branch between -32,768 and +32,767 bytes away

� Most branches are within those ranges

� Note that we don't need to know where the code will be loaded in memory at

assembly time

� The OS will set the PC to the first instruction of the program, before starting it

� PC relative encoded branches will all work, no matter where the code is loaded

University of Washington

20

PC Relative Addressing

0x100 cmp r2, r3 0x1000

0x102 je 0x70 0x1002

0x104 � 0x1004

� � �

0x172 add r3, r4 0x1072

� PC relative branches are relocatable

� Absolute branches are not

University of Washington

21

Conditionals and Control Flow

� A test / conditional branch is sufficient to implement most

control flow constructs offered in higher level languages

� if (condition) then {...} else {�}

� while(condition) {�}

� do {�} while (condition)

� for (initialization; condition;) {...}

� (Unconditional branches implemented some related control

flow constructs

� break, continue)

University of Washington

22

Compiling Loops

 C/Java code

while (sum != 0) {

 <loop body>

}

 Machine code

loopTop: cmp r3, $0

 be loopDone

 <loop body code>

 jmp loopTop

loopDone:

� How to compile other loops should be clear to you

� The only slightly tricky part is to be sure where the conditional branch

occurs: top or bottom of the loop

� Q: How is for(i=0; i<100; i++) implemented?

� Q: How are break and continue implemented?

University of Washington

23

The switch statement

� At first glance, switch doesn't

conform to our notion of �either

take the branch or not�

� It's not a binary decision, it's n-ary

� switch can be re-written as an if-then-else

� transforms it into n binary decisions

� there is sometimes an optimized implementation available

to the compiler

� jump tables

switch (class) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 4: <some code>

 break;

�

 default: <some code>

 break;

}

University of Washington

24

switch / jump tables

� A jump table is an array of addresses

� Each address points to an instruction

� In the case of switch, the jump table

entries point to the sections of code

for the case's

� To implement the switch:

� use the selector (class, in the example) as an index into the jump table

� load the 32-bit address from the jump table into a register, say r3

� jmp r3

� This is an unconditional jump

� The PC is assigned the contents of r3

switch (class) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 4: <some code>

 break;

�

 default: <some code>

 break;

}

University of Washington

25

jump table picture

switch (class) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 4: <some code>

 break;

 default: <some code>

 break;

}

0

1
2
3
4

University of Washington

26

switch / jump table review

switch (switch) {

 case 0: <some code>

 break;

 case 1: <some code>

 break;

 case 52000: <some code>

 break;

 default: <some code>

 break;

}

Why is the compiler unlikely to implement this as a jump table?

University of Washington

27

switch aside

int x, y, z, class;

�

switch (class) {

 case x: <some code>

 break;

 case y: <some code>

 break;

 case z: <some code>

 break;

 default: <some code>

 break;

}

Why is this not legal (in most languages)?

University of Washington

28

x86 ISA Part 2
Data

University of Washington

29

x86 Data

� Programmer controlled data is held in registers and memory

� The ISA says registers are 32-bits wide

� The ISA says that memory:

� is byte addressable

� allows transfers of 1, 2, 4 bytes into / out of registers

� The �names� for data are defined by the ISA, not the

programmer

� registers 0 � 7

� memory locations 0, 1, 2, �

University of Washington

30

Types

� There is some notion of type defined by the ISA

� byte vs. word

� integer vs. float

� However, the type is not associated with the data

� It's associated with the operation being performed on the data

� add 8(r2), r3 vs. fadd 8(r2), f3

� There is no notion of type checking

� What might type checking mean at the hardware level?

� Why would you not implement that?

University of Washington

31

Addressing memory

� Instructions that use memory have to specify an address

� Embedding addresses into instructions has two drawbacks

� Instructions are big: an address is 32 bits

� You have to know the address at assembly time

� You don't if the code wants to 'new' up an object, say

� You don't if you're not sure just where the code will be loaded into memory

� You don't if only part of the code is compiled at a time

� In C, it's routine to compile just one file of a program that is composed of dozens

of files

� The compiler sees only the code in that file, not the whole program, so cannot

decide where in memory code or data will be located

� Resolving this particular issue is the job of the linker. We'll come back to it later.

University of Washington

32

Addressing Memory (continued)

� The most general memory addressing scheme is to indirect

using a register

� The instruction names a register that holds the address

� mrmovl (r2), r3

� An arbitrary (and arbitrarily long) sequence of instructions can be used

to compute the address

� That works, but you end up needing either

� a lot of registers, each pointing at a variable currently used frequently,

or

� a single register but a lot of instructions (re)computing addresses you

need frequently

University of Washington

33

Addressing Memory (cont.)

� Base-displacement addressing provides more flexibility

� mrmovl $8(r2), r3

� effective address is 8 + R[r2]

� Example use of base-displacement addressing: arrays

� Array access with an index known at compile time

� A[2]

� r2 points at array A; the offset of element 2 is 8

University of Washington

34

Array Addressing

� It isn't that common to know the array index at compile time

� A[j] is more common than A[2]

� The x86 supports this too, meaning it provides a way to create the required

effective address without using extra registers or extra instructions

� (r2, r5, 4)

� r2 points to A

� r5 holds j (you needed that in a register anyway)

� 4 is the size of each element of the array, in bytes

� effective address is R[r2] + R[r5]*4

� This is very CISC...

� x86 even supports A[j+2]

� 8(r2,r5,4)

University of Washington

35

Back to base-displacement addressing...

� Simple (RISC-y) base-displacement addressing is useful beyond

arrays

� Distinct variables that the compiler knows it has allocated

contiguously can be addressed using a single register

� int i, j, k;

� r2 points to i; $4(r2) is j; $8(r2) is k

� Note that the compiler knows the offsets of the variables at compile time

� Note that it isn't essential that it know the value of the �base� (r2) � it

can generate instructions to set that up at run time

� Note that only a single base register allows access to a large number of

distinct variables

University of Washington

36

C structs

� C provides a user-defined, structured data type: the struct

� struct {

 int accountNumber;

 int balance; // in pennies

} account;

� That actually creates a variable, named account, of the struct type, but there's a

way to define the type and then declare many instances of it as well

� Note that if I have a pointer to account in r2, say:

� 0(r2) points to account.accountNumber

� 4(r2) points to account.balance

� This idea is how the C++ compiler generates instructions to access the

instance variables of objects (C++ has classes...)

University of Washington

37

C: User defined types

� C's facility for defining types is really just an aliasing facility

� typedef unsigned char byte;

� You can now type 'byte' anywhere 'unsigned char' would have made sense

� typedef struct {

 int accountNumber;

 int balance; // in pennies

} AccountType;

AccountType accounts[200];

� Define a type (AccountType),, then create an array of elements of that type

� Type equivalence in C is by name

� So, an element of array accounts is not the same type as variable 'account' on the previous slide (even

though the struct definitions are identical)

� accounts[0] is of type 'AccountType'

� account is of type 'struct <anonymous>'

� When types are compatible, struct assignment is defined (as bit copy)

� accounts[0] = accounts[10]; // is legal

� This is �shallow copy�, in 142/3 terminology

University of Washington

38

x86 ISA Part III
ISA Abstractions v. HLL Abstractions

University of Washington

39

Overview

� You know a lot about Java

� You also know a bit about C, and how much of it is a lot like Java

� You know the essentials about what hardware does

� Let's look at the programming abstractions Java/C provide and

compare with what the hardware provides

� Anything not provided by the hardware must be being provided by

software, e.g., the compiler

University of Washington

40

HLL vs. HW
� Let's divide the discussion into three parts:

� things in C I don't understand (e.g., because they're not legal in Java)

� statements, operators, and control flow

� data / variables #include <stdio.h>

int N = 16;

int fib(int n) {
 int result;
 if (n == 0) result = 0;
 else if (n == 1) result = 1;
 else result = fib(n-1) + fib(n-2);
 return result;
}

int main(int argc, char* argv[]) {
 int result = fib(N);
 printf("Fibonnaci[%d] = %d\n", N, result);
 return 0;
}

