

University of Washington

1

The Hardware/Software Interface
CSE351 Winter 2011

Module 6: Memory Layout & Procedure Call

University of Washington

2

Memory Layout

� Memory holds instructions and data

� There are four kinds of data, distinguished by their lifetime and

mutability

� lifetime: when does it come into existence? when does it leave?

� mutability: can it change value as the program runs?

� Note 1: we're talking about what is enforced at runtime, not whatever additional

restrictions the compiler might enforce

� How are these different?

� Note 2: we're not talking about scope at all

� That's a purely language/compiler concept

� (Plus the linker, which we'll see later in the course)

University of Washington

3

Lifetime

� When is it created and destroyed?

� Before any code runs / after all code completes

� i.e., program load time / program termination

� Example: s = �literal string�;

� During execution, according to rules set by the language

� Example: local variables

� { int myInt; myInt = getCount(); � }

� During execution, because of specific requests by the programmer

� Example: myFoo = new foo; // Note: this is NOT C (but close)

 �

 delete myFoo; // Not C either!

� Note: Java does automatic garbage collection. We'll think of that for now as 'delete,'

even though the programmer doesn't write a delete statement.

University of Washington

4

Mutability

� Mutable: value can change during program execution

� Example: myInt = 4;

� Immutable: value is not allowed to change during execution

� Example: char* s = �literal string�; // s initialized to address of literal

 strcpy(s, �new string�); // try to copy �new string� to *s

University of Washington

7

IA32 Stack

� Region of memory managed

with a stack discipline

� Grows toward lower addresses

� Customarily shown �upside-down�

� Register %esp contains

lowest stack address

= address of �top� element

Stack Pointer: %esp

Stack Grows

Down

Increasing

Addresses

Stack �Top�

Stack �Bottom�

7

University of Washington

8

IA32 Stack: Push

� pushl Src
� Fetch operand at Src

� Decrement %esp by 4

� Write operand at address

given by %esp

Stack Grows

Down

Increasing

Addresses

Stack �Top�

Stack �Bottom�

Stack Pointer: %esp
-4

8

University of Washington

9

IA32 Stack: Pop

Stack Pointer: %esp

Stack Grows

Down

Increasing

Addresses

Stack �Top�

Stack �Bottom�
�popl Dest

� Read operand at address %esp
� Increment %esp by 4

� Write operand to Dest

+4

9

University of Washington

10

Procedure Call Overview

<set up args>
call
<find return val> <create local vars>

 �
<set up return val>
<destroy local vars>
return

Caller

Callee

� Caller must leave args in a place callee knows to look for them
� Caller must leave �return address� in a place callee knows to look for it
� Caller and callee run on the same CPU use the same registers�

� What can the caller expect the register state to be when callee returns?

<set up args>
call
<find return val>

...

University of Washington

11

Procedure Call Overview (cont.)

<save regs>
<set up args>
call
<un-set up args>
<restore regs>
<find return val>

<save regs>
<create local vars>
 �
<set up return val>
<destroy local vars>
<restore regs>
return

Caller

Callee

� The convention for where to leave/find things is called the
 procedure call linkage

� It is implemented by the compiler
� The hardware provides some basic functionality
� Linkage convention details differ from one system type to another

<save regs>
<set up args>
call
<un-set up args>
<restore regs>
<find return val>

...

University of Washington

12

Procedure Control Flow
� Use stack to support procedure call and return

� Procedure call: call label
� Push return address on stack

� Jump to label

�Return address:
� Address of instruction immediately following call
� Example from disassembly

�804854e: e8 3d 06 00 00 call 8048b90 <main>

�8048553: 50 pushl %eax

� Return address = 0x8048553

�Procedure return: ret
� Pop address from stack

� Jump to address

12

University of Washington

13

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure Call Example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x8048553

0x104

%eip: program counter

13

University of Washington

14

%esp

%eip

%esp

%eip 0x8048553

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure Call Example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x8048b90

0x104

%eip: program counter

14

+ 0x000063d

University of Washington

15

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure Return Example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

0x108

0x8048553

0x8048553

%eip: program counter

15

University of Washington

16

Stack-Based Languages
�Languages that support recursion

� e.g., C, Pascal, Java

� Code must be re-entrant
� Multiple simultaneous instantiations of single procedure

� Need some place to store state of each instantiation
� Arguments

� Local variables

� Return pointer

�Stack discipline
� State for a given procedure needed for a limited time

� Starting from when it is called to when it returns

� Callee always returns before caller does

�Stack allocated in frames
� State for a single procedure instantiation

16

University of Washington

17

Call Chain Example

yoo(�)
{

�
�
who();
�
�
}

who(�)
{

� � �
amI();
� � �
amI();
� � �
}

amI(�)
{

�
�
amI();
�
�
}

yoo

who

amI

amI

amI

Example

Call Chain

amI

Procedure amI is recursive

(calls itself)

17

University of Washington

18

Frame

for

proc

Frame Pointer: %ebp

Stack Frames

� Contents
� Local variables

� Return information

� Temporary space

�Management
� Space allocated when procedure is entered

� �Set-up� code

� Space deallocated upon return
� �Finish� code

Stack Pointer: %esp

Previous

Frame

Stack �Top�

18

University of Washington

19

Example

yoo(�)
{

�
�
who();
�
�
}

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

19

University of Washington

20

who(�)
{

� � �
amI();
� � �
amI();
� � �
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

20

University of Washington

21

amI(�)
{

�
�
amI();
�
�
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

amI

21

University of Washington

22

amI(�)
{

�
�
amI();
�
�
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

amI

amI

22

University of Washington

23

amI(�)
{

�
�
amI();
�
�
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

amI

amI

amI

23

University of Washington

24

amI(�)
{

�
�
amI();
�
�
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

amI

amI

24

University of Washington

25

amI(�)
{

�
�
amI();
�
�
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

amI

25

University of Washington

26

who(�)
{

� � �
amI();
� � �
amI();
� � �
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

26

University of Washington

27

amI(�)
{

�
�
�
�
�
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

amI

27

University of Washington

28

who(�)
{

� � �
amI();
� � �
amI();
� � �
}

Example

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

who

28

University of Washington

29

Example

yoo(�)
{

�
�
who();
�
�
}

yoo

who

amI

amI

amI

amI

yoo

%ebp

%esp

Stack

29

University of Washington

30

IA32/Linux Stack Frame

�Current Stack Frame (�Top� to Bottom)
� Old frame pointer

� Local variables

If can�t be just kept in registers

� Saved register context

When reusing registers

� �Argument build area�

Parameters for function

about to be called

�Caller Stack Frame
� Return address

Pushed by call instruction

� Arguments for this call

Return Addr

Saved

Registers

+

Local

Variables

Argument

Build

Old %ebp

Arguments

Caller

Frame

Frame pointer

%ebp

Stack pointer

%esp
30

University of Washington

31

Revisiting swap

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

int zip1 = 15213;
int zip2 = 98195;

void call_swap()
{
 swap(&zip1, &zip2);
}

call_swap:
� � �
pushl $zip2 # Global Var
pushl $zip1 # Global Var
call swap
� � �

&zip2

&zip1

Rtn adr %esp

Resulting

Stack�

�

�

Calling swap from call_swap

31

University of Washington

32

Revisiting swap

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

movl 12(%ebp),%ecx
movl 8(%ebp),%edx
movl (%ecx),%eax
movl (%edx),%ebx
movl %eax,(%edx)
movl %ebx,(%ecx)

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Body

Set

Up

Finish

32

University of Washington

33

swap Setup #1

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

Resulting Stack

&zip2

&zip1

Rtn adr %esp

Entering Stack

�

�

�

%ebp

yp

xp

Rtn adr

Old %ebp

%ebp
�

�

�

%esp

33

University of Washington

34

swap Setup #1

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

&zip2

&zip1

Rtn adr %esp

Entering Stack

�

�

�

%ebp

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

Resulting Stack

34

University of Washington

35

swap Setup #1

&zip2

&zip1

Rtn adr %esp

Entering Stack

�

�

�

%ebp

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

Resulting Stack

Old %ebx

35

swap:
pushl %ebp
movl %esp,%ebp
pushl %ebx

University of Washington

36

12

8

4

swap Setup #1

&zip2

&zip1

Rtn adr %esp

Entering Stack

�

�

�

%ebp

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

Resulting Stack

Old %ebx

movl 12(%ebp),%ecx # initialize yp
movl 8(%ebp),%edx # initialize xp
. . .

Offset relative

to new %ebp

36

University of Washington

37

swap Finish #1

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

swap�s Stack

Old %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

Resulting Stack

Old %ebx

Observation: Saved and restored

register %ebx
37

University of Washington

38

swap Finish #2

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

swap�s Stack

Old %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

Resulting Stack

38

University of Washington

39

swap Finish #3

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

swap�s Stack

Old %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Resulting Stack

yp

xp

Rtn adr

%ebp
�

�

�

%esp

39

University of Washington

40

swap Finish #4

yp

xp

Rtn adr

Old %ebp %ebp

�

�

�

%esp

swap�s Stack

Old %ebx

movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

yp

xp

%ebp
�

�

�

%esp

Resulting Stack

� Observation
� Saved & restored register %ebx
� Didn�t do so for %eax, %ecx, or %edx

40

University of Washington

41

Disassembled swap

080483a4 <swap>:
 80483a4: 55 push %ebp
 80483a5: 89 e5 mov %esp,%ebp
 80483a7: 53 push %ebx
 80483a8: 8b 55 08 mov 0x8(%ebp),%edx
 80483ab: 8b 4d 0c mov 0xc(%ebp),%ecx
 80483ae: 8b 1a mov (%edx),%ebx
 80483b0: 8b 01 mov (%ecx),%eax
 80483b2: 89 02 mov %eax,(%edx)
 80483b4: 89 19 mov %ebx,(%ecx)
 80483b6: 5b pop %ebx
 80483b7: c9 leave
 80483b8: c3 ret

 8048409: e8 96 ff ff ff call 80483a4 <swap>
 804840e: 8b 45 f8 mov 0xfffffff8(%ebp),%eax

Calling Code

41

mov %ebp,%esp

pop %ebp

0x0804840e + 0xffffff96 = 0x080483a4

University of Washington

42

Register Saving Conventions
�When procedure yoo calls who:

� yoo is the caller

� who is the callee

�Can Register be used for temporary storage?

� Contents of register %edx overwritten by who

yoo:
� � �
movl $15213, %edx
call who
addl %edx, %eax

� � �
ret

who:
� � �
movl 8(%ebp), %edx
addl $98195, %edx

� � �
ret

42

University of Washington

43

Register Saving Conventions
�When procedure yoo calls who:

� yoo is the caller

� who is the callee

�Can register be used for temporary storage?

�Conventions
� �Caller Save�

� Caller saves temporary in its frame before calling

� �Callee Save�
� Callee saves temporary in its frame before using

43

University of Washington

44

IA32/Linux Register Usage
� %eax, %edx, %ecx

� Caller saves prior to call if values

are used later

� %eax
� also used to return

integer value

� %ebx, %esi, %edi
� Callee saves if wants to use them

� %esp, %ebp
� special

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-Save

Temporaries

Callee-Save

Temporaries

Special

44

University of Washington

45

int rfact(int x)
{
 int rval;
 if (x <= 1)
 return 1;
 rval = rfact(x-1);
 return rval * x;
}

rfact:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ebx
cmpl $1,%ebx
jle .L78
leal -1(%ebx),%eax
pushl %eax
call rfact
imull %ebx,%eax
jmp .L79
.align 4

.L78:
movl $1,%eax

.L79:
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
ret

Recursive Factorial

�Registers
� %ebx used, but saved at beginning &

restored at end

� %eax used without first saving
� expect caller to save

� pushed onto stack as parameter for next call

� used for return value

45

University of Washington

46

IA 32 Procedure Summary
� Stack makes recursion work

� Private storage for each instance of procedure call
� Instantiations don�t clobber each other

� Addressing of locals + arguments can be

relative to stack positions

� Managed by stack discipline
� Procedures return in inverse order of calls

�IA32 procedures

Combination of Instructions + Conventions
� call / ret instructions

� Register usage conventions
� caller / callee save

� %ebp and %esp

� Stack frame organization conventions

Return Addr

Saved

Registers

+

Local

Variables

Argument

Build

Old %ebp

Arguments

Caller

Frame

%ebp

%esp
46

