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Relevant Course Information

❖ hw3 due Friday, hw4 due Monday

❖ Lab 1a released

▪ Some later functions require bit shifting, covered in Lec 5

▪ Workflow:
1) Edit 

2) Run the Makefile ( followed by ) and check for 
compiler errors & warnings

3) Run ptest ( ) and check for correct behavior

4) Run rule/syntax checker ( ) and check output 

▪ Due Monday 10/10, will overlap a bit with Lab 1b
• We grade just your last submission

• Don’t wait until the last minute to submit – need to check autograder
output
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Lab Synthesis Questions

❖ All subsequent labs (after Lab 0) have a “synthesis 
question” portion

▪ Can be found on the lab specs and are intended to be done 
after you finish the lab

▪ You will type up your responses in a file for submission 
on Gradescope

▪ These will be graded “by hand” (read by TAs)

❖ Intended to check your understand of what you 
should have learned from the lab

▪ Also great practice for short answer questions on the exams
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Reading Review

❖ Terminology:

▪ Bitwise operators ( , , , )

▪ Logical operators ( , , )

▪ Short-circuit evaluation

▪ Unsigned integers

▪ Signed integers (Two’s Complement)

❖ Questions from the Reading?
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Review Questions

❖ Compute the result of the following expressions for

▪

▪

▪

▪

❖ Compute the value of 
(Two’s Complement)
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Bitmasks

❖ Typically binary bitwise operators ( , , ) are used 
with one operand being the “input” and other 
operand being a specially-chosen bitmask (or mask) 
that performs a desired operation

❖ Operations for a bit 𝑏 (answer with 0, 1, 𝑏, or ത𝑏):

𝑏 & 0 = ____ 𝑏 & 1 = ____

𝑏 | 0 = ____ 𝑏 | 1 = ____

𝑏 ^ 0 = ____ 𝑏 ^ 1 = ____
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Bitmasks

❖ Typically binary bitwise operators ( , , ) are used 
with one operand being the “input” and other 
operand being a specially-chosen bitmask (or mask) 
that performs a desired operation

❖ Example: 𝑏|0 = 𝑏,  𝑏|1 = 1
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← input

← bitmask
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Numerical Encoding Design Example

❖ Encode a standard deck of playing cards

▪ 52 cards in 4 suits

❖ Operations to implement:

▪ Which is the higher value card?

▪ Are they the same suit?

8



CSE351, Autumn 2022L04:  Data III & Integers I

Representations and Fields

1) Binary encoding of all 52 cards – only 6 bits needed

▪ 26 = 64 ≥ 52

▪ Fits in one byte

▪ How can we make value and suit comparisons easier?

2) Separate binary encodings of suit (2 bits) and value 
(4 bits)

▪ Also fits in one byte, and easy to do comparisons
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low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11

K Q J .  .  . 3 2 A

1101 1100 1011 ... 0011 0010 0001
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Compare Card Suits

char hand[5];       // represents a 5-card hand

char card1, card2;  // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if ( same_suit(card1, card2) ) { ... }
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SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired 
behavior when used with a bitwise operator on 
another bit vector v.  
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK  0x30

int same_suit(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent
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Compare Card Suits

11

#define SUIT_MASK  0x30

int same_suit(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎&

=

^

!

=

&
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Compare Card Values

12

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK  0x0F

int greater_value(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

char hand[5];       // represents a 5-card hand

char card1, card2;  // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if ( greater_value(card1, card2) ) { ... }
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Compare Card Values

13

#define VALUE_MASK  0x0F

int greater_value(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

==

210 > 1310

0 (false)
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❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, 
Arrays, Structs

❖ How do we store information for other parts of the 
house of computing to access?

▪ How do we represent data and what limitations exist?

▪ What design decisions and priorities went into these 
encodings?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

14
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Encoding Integers

❖ The hardware (and C) supports two flavors of integers

▪ unsigned – only the non-negatives

▪ signed – both negatives and non-negatives

❖ Cannot represent all integers with 𝑤 bits

▪ Only 2𝑤 distinct bit patterns

▪ Unsigned values: 0 ... 2𝑤–1

▪ Signed values: −2𝑤−1 … 2𝑤−1–1

❖ Example: 8-bit integers (e.g., char)
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0
-∞

+256+128−128
+𝟐𝟖+𝟐𝟖−𝟏−𝟐𝟖−𝟏

+∞

𝟎



CSE351, Autumn 2022L04:  Data III & Integers I

Unsigned Integers (Review)

❖ Unsigned values follow the standard base 2 system

▪ b7b6b5b4b3b2b1b0 = b72
7 + b62

6 +⋯+ b12
1 + b02

0

❖ Useful formula:  2N−1 + 2N−2 + … + 2 + 1 = 2N − 1

▪ i.e., N ones in a row = 2N − 1

▪ e.g., 0b111111 = 63
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Sign and Magnitude

❖ Designate the high-order bit (MSB) as the “sign bit”
▪ sign=0:  positive numbers;  sign=1: negative numbers

❖ Benefits:

▪ Using MSB as sign bit matches positive numbers with 
unsigned

▪ All zeros encoding is still = 0

❖ Examples (8 bits): 

▪ 0x00 = 000000002 is non-negative, because the sign bit is 0

▪ 0x7F = 011111112 is non-negative (+12710)

▪ 0x85 = 100001012 is negative (-510)

▪ 0x80 = 100000002 is negative...
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... zero???

Not used in practice 
for integers!
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Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks?
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15

Unsigned
Sign and 

Magnitude

Not used in practice 
for integers!
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Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks:

▪ Two representations of 0  (bad for checking equality)

19

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

Sign and 
Magnitude

Not used in practice 
for integers!



CSE351, Autumn 2022L04:  Data III & Integers I

Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks:

▪ Two representations of 0  (bad for checking equality)

▪ Arithmetic is cumbersome
• Example:  4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!
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1

✓
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+ -3
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✗

Sign and 
Magnitude

Not used in practice 
for integers!
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Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works 
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Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works 

2) “Shift” negative numbers to eliminate –0

❖ MSB still indicates sign!

▪ This is why we represent one
more negative than positive
number (-2𝑁−1 to 2𝑁−1 −1)
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Two’s Complement Negatives (Review)

❖ Accomplished with one neat mathematical trick!

▪ 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10

• 10102 two’s complement:
-1*23+0*22+1*21+0*20 = –6

▪ -1 represented as: 
11112 = -23+(23 – 1)
• MSB makes it super negative, add up 

all the other bits to get back up to -1
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bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2
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Polling Question

❖ Take the 4-bit number encoding x = 0b1011

❖ Which of the following numbers is NOT a valid 
interpretation of x using any of the number 
representation schemes discussed today?

▪ Unsigned, Sign and Magnitude, Two’s Complement

▪ Vote in Ed Lessons

A. -4

B. -5

C. 11

D. -3

E. We’re lost…
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Two’s Complement is Great (Review)

❖ Roughly same number of (+) and (–) numbers

❖ Positive number encodings match unsigned

❖ Single zero

❖ All zeros encoding = 0

❖ Simple negation procedure:

▪ Get negative representation 
of any integer by taking 
bitwise complement and 
then adding one!
( ~x + 1 == -x )
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Summary

❖ Bit-level operators allow for fine-grained 
manipulations of data
▪ Bitwise AND (&), OR (|), and NOT (~) different than logical 

AND (&&), OR (||), and NOT (!)

▪ Especially useful with bit masks

❖ Choice of encoding scheme is important
▪ Tradeoffs based on size requirements and desired 

operations

❖ Integers represented using unsigned and two’s 
complement representations
▪ Limited by fixed bit width

▪ We’ll examine arithmetic operations next lecture
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