YW UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

Data lll & Integers |

CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:

Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu

Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

CSES351, Autumn 2022

ALATH, DONEHLIN,
DONEHLINL, ALATH,

ALAIH, DONEHLINI,
DDNEHLINI DONEHLINI,
ALAH, ALAIH,

DONEHLINL - ALATH,

DONEHLINI, D[}NEHUNl,
DUNEHL1N1

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATO COPE TALKER.

... IS HE JUST USING
NAVATO WORDS FOR
"ZERD HND "ONE" ?

WHOA, HEY, KEEP
YOUR ch DOWN!

;&L

http://xkcd.com/257/

http://xkcd.com/257/

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

Relevant Course Information

+» hw3 due Friday, hw4 due Monday
« Lab l1la released

= Some later functions require bit shifting, covered in Lec 5

= Workflow:
1) Edit pointer.c

2) Run the Makefile (make clean followed by make) and check for
compiler errors & warnings

3) Run ptest (. /ptest) and check for correct behavior
4) Run rule/syntax checker (python3 dlc.py)and check output

= Due Monday 10/10, will overlap a bit with Lab 1b
- We grade just your /ast submission

- Don’t wait until the last minute to submit — need to check autograder
output

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Lab Synthesis Questions

+ All subsequent labs (after Lab 0) have a “synthesis
guestion” portion

" Can be found on the lab specs and are intended to be done
after you finish the lab

" You will type up your responses in a . txt file for submission
on Gradescope

" These will be graded “by hand” (read by TAs)

» Intended to check your understand of what you
should have learned from the lab
= Also great practice for short answer questions on the exams

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

Reading Review

+» Terminology:
= Bitwise operators (&, |, *, ~)
= |ogical operators (&&, | |, !)
= Short-circuit evaluation
" Unsigned integers
= Signed integers (Two’s Complement)

% Questions from the Reading?

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

Review Questions

+» Compute the result of the following expressions for
char ¢ = 0x81;

=c N cC

= ~Cc & OxA9
"c || ox80
= llc

+~ Compute the value of signed char sc = 0OxFO;
(Two’s Complement)

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Bitmasks

+ Typically binary bitwise operators (&, |, *) are used
with one operand being the “input” and other

operand being a specially-chosen bitmask (or mask)
that performs a desired operation

» Operations for a bit b (answer with 0, 1, b, or b):
b&0=___ b&1=___
b|0=__ b|1=__

b "0=__ b "1l=__

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

Bitmasks

+ Typically binary bitwise operators (&, |, *) are used
with one operand being the “input” and other

operand being a specially-chosen bitmask (or mask)
that performs a desired operation

+ Example: b|0 =b, b|1 =1

01010101 <« input
I 11110000 < bitmask
11110101

YW UNIVERSITY of WASHINGTON

+» Operations to implement:
= Which is the higher value card?
= Are they the same suit?

LO4: Data lll & Integers |

Numerical Encoding Desigh Example

+» Encode a standard deck of playing cards

® 52 cards in 4 suits

7

8

td

n»

Ev’v

A s i 3 HE
Sogt
L] L] ***
v * g ® P
4 e |3 io o 3o a 2o s |la,
- o | &
) v v **0 ¢*
i e ¢ 4 v v ol e
A v lvw v e [l
)
PSS
PP

>3

<L+

* * |9 € €| € P P X P

> o o> ¢

Zo‘o

§0‘0

CSES351, Autumn 2022

\J
0¢¢¢
>%2¢¢ ¢¢d>

P,
=13

+0
L R B 2
(=2t 2
+*=
LR & R 2
> * ?
L = 2

24

&>
L R 2 X 2

(=R

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Representations and Fields

1) Binary encoding of all 52 cards — only 6 bits needed
" 20 =64>52

low-order 6 bits of a byte
" Fits in one byte
®= How can we make value and suit comparisons easier?

2) Separate binary encodings of suit (2 bits) and value

(4 bits)
Suit value & 00
= Also fits in one byte, and easy to do comparisons e 01
K | a | ... | 3 2 A v 10
1101|1100 |1011| ... |0011[/0010|0001 o 11

YW UNIVERSITY of WASHINGTON

Compare Card Suits

char hand[5];

char cardl, card2; // tw
cardl = hand[0];

card?2 = hand([1l];

if (same suit (cardl,

LO4: Data lll & Integers |

CSES351, Autumn 2022

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.

Here we turn all but the bits of interest in v to 0.

// reprfesents a 5-card hand

cards to compare

) 1 ece

#define SUIT MASK 0x30

eturn
return

}

int same suit (char cardl, char card2) {
(! ((cardl & SUIT MASK) *
(cardl & SUIT MASK)

(card2 & SUIT MASK)));

returns intJ SUIT_MASK = 0x30 =

suit value

olofl1|1]0|0]0 O\Lequivalent
10

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

Compare Card Suits

CSES351, Autumn 2022

#define SUIT MASK 0x30

//return (cardl & SUIT MASK)

int same suit (char cardl, char card2?)
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

{

== (card2 & SUIT MASK) ;

s
3

3
*

2 e
0101011210101]0
& *
O10111110]10]0]0 SUIT MASK 0

0101000

[!(XAy)equwamntUJx==y F::== |
01]0({0]1010

11

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

Compare Card Values

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if (greater value(cardl, card2)) { ... }

#define VALUE MASK OxOF

int greater value(char cardl, char card2) {
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK));

VALUE_MASK =0xOF ={0]0]0|0|1|1f1]1

. value
sult 12

YW UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

CSES351, Autumn 2022

Compare Card Values

#define VALUE MASK

int greater value(char cardl, char card2)

return

((unsigned int) (cardl & VALUE MASK)

(unsigned 1int) (card2 & VALUE MASK));

3

@

&

]

VALUE MASK

2.9 > 134,

(false)

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

The Hardware/Software Interface

+ Topic Group 1: Data T~

Even more applications
" Memory, Data, Integers, Floating Point, _ :
Arrays, Structs Applications

Programming Languages
& Libraries

Operating System

| Hardware I

Transistors, Gates, Digital Systems

Physics

+» How do we store information for other parts of the
house of computing to access?

*" How do we represent data and what limitations exist?

= What design decisions and priorities went into these
encodings?

14

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Encoding Integers

+ The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
" signed — both negatives and non-negatives

« Cannot represent all integers with w bits
= Only 2% distinct bit patterns
" Unsigned values: 0..2"-1
» Signed values: —2W~1 .2w-14

« Example: 8-bit integers (e.g., char)

+00

—128 0 +128 +256
—28-1 0 +28-1 +28

15

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

Unsigned Integers (Review)

+ Unsigned values follow the standard base 2 system
u b7b6b5b4b3b2b1b0 — b727 + b626 + .-+ b121 + bOZO

+ Useful formula: 2N-1 42N-2, 1241 =2N_1

" je., Nonesinarow=2N—1
" e.g.,0b111111=63

16

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Not used in practice
for integers!

Sign and Magnitude

+ Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; sign=1: negative numbers
+ Benefits:

= Using MSB as sign bit matches positive numbers with
unsigned

= All zeros encoding is still =0
+» Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is O
" Ox7F=01111111, is non-negative (+127,,)
" 0x85 =10000101, is negative (-5,,)
= 0x80 = 10000000, is negative... zero???

17

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Not used in practice
for integers!

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude
«» Drawbacks?

15 0

14

1111
1110
1101

0000
0001
0010

1111
1110
1101

0000
0001
0010

13

12 [1100 | 0011 | ° “*1100 ggnang 001177
Unsigned Magnitude
1111011 0100 | 4 _3\1011 0100 |, 4
1010 0101 1010
10 \ 1001 0110 5 -2 1001 +5

1000 0111 1000 0111

18

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Not used in practice
for integers!

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude

<« Drawbacks:

= Two representations of 0 (bad for checking equality)
-7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
_3 1011 MagnitUde 0100

1010
1001
1000 0111

19

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Sign and Magnitude

Not used in practice
for integers!

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)
" Arithmetic is cumbersome —7 +0

- Example: 4-3 != 4+ (-3)

1111 0000

_s / 1110 0001 \ 42
41 0100 41 0100 . 1101 0010 s 3
- 3|- 0011 + -3+ 1011 1100 Sign and 0011
1 0001 -/ 1111 3 1011 Magnitude 0100 L4
v X
1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

20

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

21

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

+» MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2¥ "1 to 271 —1) 1011

22

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Two’s Complement Negatives (Review)

+» Accomplished with one neat mathematical trick!

b,,_1 has weight —2W~1, other bits have usual weights +2!
Z |
\r bw-l bWKZ * \bO

= 4-bit Examples: _q +0
- 1010, unsigned:
1*2340%22+1*21+0*2°=10
- 1010, two’s complement:
-1%23+0%22+1%21+0%20 = —6 -4

1111
1110

0000
0001
1101 0010

1100 Two's 0011
_ | 1011 Complement 0100

1010
1001
1000 0111

= -1 represented as:
1111, = -23+(23-1)
- MSB makes it super negative, add up
all the other bits to get back up to -1

23

YA UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

CSES351, Autumn 2022

Polling Question

+ Take the 4-bit number encodingx = 0bl011

+» Which of the following numbers is NOT a valid
interpretation of x using any of the number
representation schemes discussed today?

" Unsigned, Sign and Magnitude, Two’s Complement
"= Vote in Ed Lessons

-5
11
. -3
We're lost...

m o O W >

24

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Two’s Complement is Great (Review)

» Roughly same number of (+) and (=) numbers
+ Positive number encodings match unsigned

» Single zero

» All zeros encoding =0

1111
1110
1101

0000
0001
0010

» Simple negation procedure:

= Get negative representation ~% (1100 Two's o011 |* 3
of any integer by taking _ 5| 1011 Complement ;g by
bitwise complement and 1010
then adding one! -6\ 1001 + 5
(~x + 1 == -x) 1000 0111

25

YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Summary

+ Bit-level operators allow for fine-grained
manipulations of data

= Bitwise AND (&), OR (|), and NOT (~) different than logical
AND (&&), OR(] |), and NOT (!)

= Especially useful with bit masks
+ Choice of encoding scheme is important

" Tradeoffs based on size requirements and desired
operations

% Integers represented using unsigned and two’s
complement representations
" Limited by fixed bit width
= We'll examine arithmetic operations next lecture

26

