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Relevant Course Information

+» hw3 due Friday, hw4 due Monday
« Lab l1la released

= Some later functions require bit shifting, covered in Lec 5

= Workflow:
1) Edit pointer.c

2) Run the Makefile (make clean followed by make) and check for
compiler errors & warnings

3) Run ptest (. /ptest) and check for correct behavior
4) Run rule/syntax checker (python3 dlc.py)and check output

= Due Monday 10/10, will overlap a bit with Lab 1b
- We grade just your /ast submission

- Don’t wait until the last minute to submit — need to check autograder
output
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Lab Synthesis Questions

+ All subsequent labs (after Lab 0) have a “synthesis
guestion” portion

" Can be found on the lab specs and are intended to be done
after you finish the lab

" You will type up your responses in a . txt file for submission
on Gradescope

" These will be graded “by hand” (read by TAs)

» Intended to check your understand of what you
should have learned from the lab
= Also great practice for short answer questions on the exams
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Reading Review

+» Terminology:
= Bitwise operators (&, |, *, ~)
= |ogical operators (&&, | |, !)
= Short-circuit evaluation
" Unsigned integers
= Signed integers (Two’s Complement)

% Questions from the Reading?
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Review Questions

+» Compute the result of the following expressions for
char ¢ = 0x81;

=c N cC

= ~Cc & OxA9
"c || ox80
= llc

+~ Compute the value of signed char sc = 0OxFO;
(Two’s Complement)
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Bitmasks

+ Typically binary bitwise operators (&, |, *) are used
with one operand being the “input” and other

operand being a specially-chosen bitmask (or mask)
that performs a desired operation

» Operations for a bit b (answer with 0, 1, b, or b):
b&0=___ b&1=___
b|0=__ b|1=__

b "0=__ b "1l=__
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Bitmasks

+ Typically binary bitwise operators (&, |, *) are used
with one operand being the “input” and other

operand being a specially-chosen bitmask (or mask)
that performs a desired operation

+ Example: b|0 =b, b|1 =1

01010101 <« input
I 11110000 < bitmask
11110101
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+» Operations to implement:
= Which is the higher value card?
= Are they the same suit?
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Numerical Encoding Desigh Example

+» Encode a standard deck of playing cards

® 52 cards in 4 suits
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Representations and Fields

1) Binary encoding of all 52 cards — only 6 bits needed
" 20 =64>52

low-order 6 bits of a byte
" Fits in one byte
®= How can we make value and suit comparisons easier?

2) Separate binary encodings of suit (2 bits) and value

(4 bits)
Suit value & 00
= Also fits in one byte, and easy to do comparisons e 01
K | a | ... | 3 2 A v 10
1101|1100 |1011| ... |0011[/0010|0001 o 11
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Compare Card Suits

char hand[5];

char cardl, card2; // tw
cardl = hand[0];

card?2 = hand([1l];

if ( same suit (cardl,
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mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.

Here we turn all but the bits of interest in v to 0.

// reprfesents a 5-card hand

cards to compare

) 1 ece

#define SUIT MASK 0x30

eturn
return

}

int same suit (char cardl, char card2) {
(! ((cardl & SUIT MASK) *
(cardl & SUIT MASK)

(card2 & SUIT MASK)));

returns intJ SUIT_MASK = 0x30 =

suit value

olofl1|1]0|0]0 O\Lequivalent
10
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#define SUIT MASK 0x30

//return (cardl & SUIT MASK)

int same suit (char cardl, char card2?)
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

{

== (card2 & SUIT MASK) ;

s
3

3
*

2 e
0101011210101 ]0
& *
O10111110]10]0]0 SUIT MASK 0

0101000

[!(XAy)equwamntUJx==y F::== |
01]0({0]1010

11
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Compare Card Values

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if ( greater value(cardl, card2) ) { ... }

#define VALUE MASK OxOF

int greater value(char cardl, char card2) {
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK));

VALUE_MASK =0xOF ={0]0]0|0|1|1f1]1

. value
sult 12
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Compare Card Values

#define VALUE MASK

int greater value(char cardl, char card2)

return

((unsigned int) (cardl & VALUE MASK)

(unsigned 1int) (card2 & VALUE MASK));

3

@

&

]

VALUE MASK

2.9 > 134,

(false)
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The Hardware/Software Interface

+ Topic Group 1: Data T~

Even more applications
" Memory, Data, Integers, Floating Point, _ :
Arrays, Structs Applications

Programming Languages
& Libraries

Operating System

| Hardware I

Transistors, Gates, Digital Systems

Physics

+» How do we store information for other parts of the
house of computing to access?

*" How do we represent data and what limitations exist?

= What design decisions and priorities went into these
encodings?

14
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Encoding Integers

+ The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
" signed — both negatives and non-negatives

« Cannot represent all integers with w bits
= Only 2% distinct bit patterns
" Unsigned values: 0..2"-1
» Signed values:  —2W~1 .2w-14

« Example: 8-bit integers (e.g., char)

+00

—128 0 +128 +256
—28-1 0 +28-1 +28

15
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Unsigned Integers (Review)

+ Unsigned values follow the standard base 2 system
u b7b6b5b4b3b2b1b0 — b727 + b626 + .-+ b121 + bOZO

+ Useful formula: 2N-1 42N-2, 1241 =2N_1

" je., Nonesinarow=2N—1
" e.g.,0b111111=63

16



YW UNIVERSITY of WASHINGTON L04: Data Ill & Integers | CSE351, Autumn 2022

Not used in practice
for integers!

Sign and Magnitude

+ Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; sign=1: negative numbers
+ Benefits:

= Using MSB as sign bit matches positive numbers with
unsigned

= All zeros encoding is still =0
+» Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is O
" Ox7F=01111111, is non-negative (+127,,)
" 0x85 =10000101, is negative (-5,,)
= 0x80 = 10000000, is negative... zero???

17
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Not used in practice
for integers!

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude
«» Drawbacks?

15 0

14

1111
1110
1101

0000
0001
0010

1111
1110
1101

0000
0001
0010

13

12 [1100 | 0011 | ° “*1100 ggnang 001177
Unsigned Magnitude
1111011 0100 | 4 _3\1011 0100 |, 4
1010 0101 1010
10 \ 1001 0110 5 -2 1001 +5

1000 0111 1000 0111

18
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Not used in practice
for integers!

Sign and Magnitude

« MSB is the sign bit, rest of the bits are magnitude

<« Drawbacks:

= Two representations of 0 (bad for checking equality)
-7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
_3 1011 MagnitUde 0100

1010
1001
1000 0111

19
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Sign and Magnitude

Not used in practice
for integers!

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)
" Arithmetic is cumbersome —7 +0

- Example: 4-3 != 4+ (-3)

1111 0000

_s / 1110 0001 \ 42
41 0100 41 0100 . 1101 0010 s 3
- 3|- 0011 + -3+ 1011 1100 Sign and 0011
1 0001 -/ 1111 3 1011 Magnitude 0100 L4
v X
1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

20
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Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

21
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Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

+» MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2¥ "1 to 271 —1) 1011

22
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Two’s Complement Negatives (Review)

+» Accomplished with one neat mathematical trick!

b,,_1 has weight —2W~1, other bits have usual weights +2!
Z |
\r bw-l bWKZ * \bO

= 4-bit Examples: _q +0
- 1010, unsigned:
1*2340%22+1*21+0*2°=10
- 1010, two’s complement:
-1%23+0%22+1%21+0%20 = —6 -4

1111
1110

0000
0001
1101 0010

1100 Two's 0011
_ | 1011 Complement 0100

1010
1001
1000 0111

= -1 represented as:
1111, = -23+(23-1)
- MSB makes it super negative, add up
all the other bits to get back up to -1

23
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Polling Question

+ Take the 4-bit number encodingx = 0bl011

+» Which of the following numbers is NOT a valid
interpretation of x using any of the number
representation schemes discussed today?

" Unsigned, Sign and Magnitude, Two’s Complement
"= Vote in Ed Lessons

-5
11
. -3
We're lost...

m o O W >

24
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Two’s Complement is Great (Review)

» Roughly same number of (+) and (=) numbers
+ Positive number encodings match unsigned

» Single zero

» All zeros encoding =0

1111
1110
1101

0000
0001
0010

» Simple negation procedure:

= Get negative representation  ~% (1100 Two's o011 |* 3
of any integer by taking _ 5| 1011 Complement ;g by
bitwise complement and 1010
then adding one! -6\ 1001 + 5
(~x + 1 == -x) 1000 0111

25
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Summary

+ Bit-level operators allow for fine-grained
manipulations of data

= Bitwise AND (&), OR (| ), and NOT (~) different than logical
AND (&&), OR(] |), and NOT (!)

= Especially useful with bit masks
+ Choice of encoding scheme is important

" Tradeoffs based on size requirements and desired
operations

% Integers represented using unsigned and two’s
complement representations
" Limited by fixed bit width
= We'll examine arithmetic operations next lecture

26



