
CSE351, Autumn 2022L04: Data III & Integers I

Data III & Integers I
CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu
Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu
Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

http://xkcd.com/257/

http://xkcd.com/257/

CSE351, Autumn 2022L04: Data III & Integers I

Relevant Course Information

❖ hw3 due Friday, hw4 due Monday

❖ Lab 1a released

▪ Some later functions require bit shifting, covered in Lec 5

▪ Workflow:
1) Edit

2) Run the Makefile (followed by) and check for
compiler errors & warnings

3) Run ptest () and check for correct behavior

4) Run rule/syntax checker () and check output

▪ Due Monday 10/10, will overlap a bit with Lab 1b
• We grade just your last submission

• Don’t wait until the last minute to submit – need to check autograder
output

2

CSE351, Autumn 2022L04: Data III & Integers I

Lab Synthesis Questions

❖ All subsequent labs (after Lab 0) have a “synthesis
question” portion

▪ Can be found on the lab specs and are intended to be done
after you finish the lab

▪ You will type up your responses in a file for submission
on Gradescope

▪ These will be graded “by hand” (read by TAs)

❖ Intended to check your understand of what you
should have learned from the lab

▪ Also great practice for short answer questions on the exams

3

CSE351, Autumn 2022L04: Data III & Integers I

Reading Review

❖ Terminology:

▪ Bitwise operators (, , ,)

▪ Logical operators (, ,)

▪ Short-circuit evaluation

▪ Unsigned integers

▪ Signed integers (Two’s Complement)

❖ Questions from the Reading?

4

CSE351, Autumn 2022L04: Data III & Integers I

Review Questions

❖ Compute the result of the following expressions for

▪

▪

▪

▪

❖ Compute the value of
(Two’s Complement)

5

CSE351, Autumn 2022L04: Data III & Integers I

Bitmasks

❖ Typically binary bitwise operators (, ,) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

❖ Operations for a bit 𝑏 (answer with 0, 1, 𝑏, or ത𝑏):

𝑏 & 0 = ____ 𝑏 & 1 = ____

𝑏 | 0 = ____ 𝑏 | 1 = ____

𝑏 ^ 0 = ____ 𝑏 ^ 1 = ____

6

CSE351, Autumn 2022L04: Data III & Integers I

Bitmasks

❖ Typically binary bitwise operators (, ,) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

❖ Example: 𝑏|0 = 𝑏, 𝑏|1 = 1

7

← input

← bitmask

CSE351, Autumn 2022L04: Data III & Integers I

Numerical Encoding Design Example

❖ Encode a standard deck of playing cards

▪ 52 cards in 4 suits

❖ Operations to implement:

▪ Which is the higher value card?

▪ Are they the same suit?

8

CSE351, Autumn 2022L04: Data III & Integers I

Representations and Fields

1) Binary encoding of all 52 cards – only 6 bits needed

▪ 26 = 64 ≥ 52

▪ Fits in one byte

▪ How can we make value and suit comparisons easier?

2) Separate binary encodings of suit (2 bits) and value
(4 bits)

▪ Also fits in one byte, and easy to do comparisons

9

low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11

K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

CSE351, Autumn 2022L04: Data III & Integers I

Compare Card Suits

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (same_suit(card1, card2)) { ... }

10

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int same_suit(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent

CSE351, Autumn 2022L04: Data III & Integers I

Compare Card Suits

11

#define SUIT_MASK 0x30

int same_suit(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎&

=

^

!

=

&

CSE351, Autumn 2022L04: Data III & Integers I

Compare Card Values

12

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F

int greater_value(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (greater_value(card1, card2)) { ... }

CSE351, Autumn 2022L04: Data III & Integers I

Compare Card Values

13

#define VALUE_MASK 0x0F

int greater_value(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

==

210 > 1310

0 (false)

CSE351, Autumn 2022L04: Data III & Integers I

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ How do we store information for other parts of the
house of computing to access?

▪ How do we represent data and what limitations exist?

▪ What design decisions and priorities went into these
encodings?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

14

⋮

CSE351, Autumn 2022L04: Data III & Integers I

Encoding Integers

❖ The hardware (and C) supports two flavors of integers

▪ unsigned – only the non-negatives

▪ signed – both negatives and non-negatives

❖ Cannot represent all integers with 𝑤 bits

▪ Only 2𝑤 distinct bit patterns

▪ Unsigned values: 0 ... 2𝑤–1

▪ Signed values: −2𝑤−1 … 2𝑤−1–1

❖ Example: 8-bit integers (e.g., char)

15

0
-∞

+256+128−128
+𝟐𝟖+𝟐𝟖−𝟏−𝟐𝟖−𝟏

+∞

𝟎

CSE351, Autumn 2022L04: Data III & Integers I

Unsigned Integers (Review)

❖ Unsigned values follow the standard base 2 system

▪ b7b6b5b4b3b2b1b0 = b72
7 + b62

6 +⋯+ b12
1 + b02

0

❖ Useful formula: 2N−1 + 2N−2 + … + 2 + 1 = 2N − 1

▪ i.e., N ones in a row = 2N − 1

▪ e.g., 0b111111 = 63

16

CSE351, Autumn 2022L04: Data III & Integers I

Sign and Magnitude

❖ Designate the high-order bit (MSB) as the “sign bit”
▪ sign=0: positive numbers; sign=1: negative numbers

❖ Benefits:

▪ Using MSB as sign bit matches positive numbers with
unsigned

▪ All zeros encoding is still = 0

❖ Examples (8 bits):

▪ 0x00 = 000000002 is non-negative, because the sign bit is 0

▪ 0x7F = 011111112 is non-negative (+12710)

▪ 0x85 = 100001012 is negative (-510)

▪ 0x80 = 100000002 is negative...

17

... zero???

Not used in practice
for integers!

CSE351, Autumn 2022L04: Data III & Integers I

Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks?

18

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned
Sign and

Magnitude

Not used in practice
for integers!

CSE351, Autumn 2022L04: Data III & Integers I

Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks:

▪ Two representations of 0 (bad for checking equality)

19

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

Sign and
Magnitude

Not used in practice
for integers!

CSE351, Autumn 2022L04: Data III & Integers I

Sign and Magnitude

❖ MSB is the sign bit, rest of the bits are magnitude

❖ Drawbacks:

▪ Two representations of 0 (bad for checking equality)

▪ Arithmetic is cumbersome
• Example: 4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!

20

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6

– 7

0100

+ 1011

1111

0100

- 0011

0001

4

- 3

1

✓

4

+ -3

-7

✗

Sign and
Magnitude

Not used in practice
for integers!

CSE351, Autumn 2022L04: Data III & Integers I

Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

21

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1

– 0

CSE351, Autumn 2022L04: Data III & Integers I

Two’s Complement

❖ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

2) “Shift” negative numbers to eliminate –0

❖ MSB still indicates sign!

▪ This is why we represent one
more negative than positive
number (-2𝑁−1 to 2𝑁−1 −1)

22

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

CSE351, Autumn 2022L04: Data III & Integers I

Two’s Complement Negatives (Review)

❖ Accomplished with one neat mathematical trick!

▪ 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10

• 10102 two’s complement:
-1*23+0*22+1*21+0*20 = –6

▪ -1 represented as:
11112 = -23+(23 – 1)
• MSB makes it super negative, add up

all the other bits to get back up to -1

23

bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement

CSE351, Autumn 2022L04: Data III & Integers I

Polling Question

❖ Take the 4-bit number encoding x = 0b1011

❖ Which of the following numbers is NOT a valid
interpretation of x using any of the number
representation schemes discussed today?

▪ Unsigned, Sign and Magnitude, Two’s Complement

▪ Vote in Ed Lessons

A. -4

B. -5

C. 11

D. -3

E. We’re lost…
24

CSE351, Autumn 2022L04: Data III & Integers I

Two’s Complement is Great (Review)

❖ Roughly same number of (+) and (–) numbers

❖ Positive number encodings match unsigned

❖ Single zero

❖ All zeros encoding = 0

❖ Simple negation procedure:

▪ Get negative representation
of any integer by taking
bitwise complement and
then adding one!
(~x + 1 == -x)

25

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

+ 0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s
Complement

CSE351, Autumn 2022L04: Data III & Integers I

Summary

❖ Bit-level operators allow for fine-grained
manipulations of data
▪ Bitwise AND (&), OR (|), and NOT (~) different than logical

AND (&&), OR (||), and NOT (!)

▪ Especially useful with bit masks

❖ Choice of encoding scheme is important
▪ Tradeoffs based on size requirements and desired

operations

❖ Integers represented using unsigned and two’s
complement representations
▪ Limited by fixed bit width

▪ We’ll examine arithmetic operations next lecture

26

