
CSE 351 Welcome back to section
Section 9 Worksheet: Memory Allocation
To understand the computer, you must become the computer.

For this problem, you will use a heap simulator to answer questions about heap memory allocation
in C using malloc and free. First, access the heap simulator, either by going to the Lab 5 page on the
course website, or by following the link:

https://courses.cs.washington.edu/courses/cse351/heapsim/

Read through the information on the page so you can understand how the simulator works. If you
check “simulation mode” it will walk you through each step in the process of allocating a block of
memory on the heap. Notice that each header (and footer) contains three fields. They correspond
to:

block size : preceding block allocated? : this block allocated?

where 1 means “allocated” and 0 means “unallocated.” Remember that block size includes the size of
the headers and footers. In Lab 5, all of this will be stored within 8 bytes using the last few bits of
the size (see the spec for more information).

Now, answer the following questions:

1. Starting with an empty heap (you can empty the heap by refreshing the page), “Execute” the
following code:

void* ptr1 = malloc(30);

void* ptr2 = malloc(40);

void* ptr3 = malloc(70);

a. What pointer is returned if we execute another malloc now?

b. Which block(s) could you free that would cause fragmentation in the heap?

c. Which block(s) could you free that would cause coalescing to occur?

d. Suppose free(ptr2) is run immediately after malloc(70). Draw a diagram of what
the free list looks like afterwards.

e. What is the maximum size payload that we could allocate (i.e. the argument to malloc)
such that we are returned a pointer to the address 48 (0x30)

https://courses.cs.washington.edu/courses/cse351/heapsim/


Lab 5
In Lab 5, we will implement a memory management system that uses an explicit free list. Each block
has pointers to the next and previous blocks. This is the block struct we will use:

struct block_info {
// Size of the block (in the high bits) and tags for whether the
// block and its predecessor in memory are in use.
size_t size_and_tags;
struct block_info* next;
struct block_info* prev;

};
typedef struct block_info block_info;

Macros & Static Inline Functions:
We provide you with a lot of resources (helper functions, macros and static inline functions , read
fully through mm.c for all of them). Here are some of them:

UNSCALED_POINTER_ADD(p,x) Add without using “pointer arithmetic”, returns void*
UNSCALED_POINTER_SUB(p,x) Subtract without using “pointer arithmetic”, returns void*
SIZE(x) Extracts the size from the size_and_tags field
MIN_BLOCK_SIZE The size of the smallest block that is safe to allocate
TAG_USED Mask for the used tag (1 = 0b1)
TAG_PRECEDING_USED Mask for the preceding used tag (2 = 0b10)
WORD_SIZE Size of a word on this architecture

2. Given that void* ptr is a pointer to the beginning of a free block.
a. Give a C expression that sets the previous block’s next pointer to ptr’s next block, as would

be done if we were removing ptr from the free list.

______________________________________________________________________

3. Assume void* ptr is now a pointer to the payload of an allocated block. Using above macros and
functions to provide C expressions that get the following in terms of ptr:

a. Size of allocated block

size_t size_curr_blk = ______________________________________;

b. Set TAG_PRECEDING_USED of following block to True (can use answer from part a)

block_info* flw_blk = _____________________________________;

flw_blk->size_and_tags = _____________________________________;



4. Implement the following functions. Try using bitwise operators to access the tags in
size_and_tags.

// Bit masks used to retrieve tags from size_and_tags.
#define TAG_USED 1
#define TAG_PRECEDING_USED 2
// SIZE(ptr->size_and_tags) extracts size of 'size_and_tags' field.
static inline size_t SIZE(size_t x) {return ((x) & ~(ALIGNMENT -
1));}
// Copies the tags (TAG_PRECEDING_USED and TAG_USED) from
// block_to_copy to original_block. Leaves the size of
// original_block unchanged.
void copy_tags(block_info* original_block, block_info*
block_to_copy){

size_t copy_used = __________________________;

size_t copy_preceding_used = _____________________________;

original_block->size_and_tags = ____________________________;

}

block_info* FREE_LIST_HEAD;
// Removes a block from the free list. Note, this is not the full
implementation of remove_free_block, just the part where we are
reworking the links of the free list.
void remove_free_block(block_info* free_block) {

block_info* next_free, *prev_free;

next_free = free_block->next;
prev_free = free_block->prev;

// Your implementation goes here...



}


