
CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

x86-64 Programming II
CSE 351 Autumn 2023

Instructor:
Justin Hsia

Teaching Assistants:
Afifah Kashif Malak Zaki
Bhavik Soni Naama Amiel
Cassandra Lam Nayha Auradkar
Connie Chen Nikolas McNamee
David Dai Pedro Amarante
Dawit Hailu Renee Ruan
Ellis Haker Simran Bagaria
Eyoel Gebre Will Robertson
Joshua Tan http://xkcd.com/99/

http://xkcd.com/99/

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Relevant Course Information

❖ hw7 due Monday, hw8 due Wednesday

❖ Lab 1b due Monday (10/16) at 11:59 pm

▪ No major programming restrictions, but should avoid magic numbers by using C
macros (#define)

▪ For debugging, can use provided utility functions print_binary_short() and
print_binary_long()

▪ Pay attention to the output of aisle_test and store_test – failed tests will show
you actual vs. expected

▪ You have late day tokens available

2

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

3

x86-64 Programming II

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Lesson Summary (1/2)

❖ Memory Addressing Modes: The addresses used for accessing memory
in mov (and other) instructions can be computed in several different ways

▪ D(Rb,Ri,S) with base register, index register, scale factor, and displacement
compute the address Reg[Rb] + Reg[Ri]*S + D and is usually dereferenced by
instructions

▪ These map well to pointer arithmetic operations

❖ Load effective address (lea) instruction used to compute addresses and
perform basic arithmetic

▪ Doesn’t dereference the source memory operand, unlike all other instructions!

❖ Extension instructions (movz, movs) allow us to zero and sign extend data
into longer widths

4

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Lesson Summary (2/2)

❖ Terminology:

▪ Memory Operand: displacement, base register, index register, scale factor

▪ Extension instructions (movz, movs)

▪ Address computation instruction (lea)

❖ Learning Objectives:

▪ Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

▪ Use GDB tools to step through a running program and extract debugging
information from a program’s disassembly, the state of registers, and values at
specific memory locations.

❖ What lingering questions do you have from the lesson?
5

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

6

x86-64 Programming II –
Context

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Extension Instructions (Review)

❖ movz__ src, dst # Move with zero extension

movs__ src, dst # Move with sign extension

▪ Copy from a smaller source value to a larger destination
• First suffix letter is size of source, second suffix letter is size of destination

• Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

▪ src can be Mem or Reg; dst must be Reg

❖ Example: data shown in hex

▪ movzbq %al, %rbx

7

?? ?? ?? ?? ?? ?? ?? FF ←%rax

00 00 00 00 00 00 00 FF ←%rbx

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Extension Instructions (Review)

❖ movz__ src, dst # Move with zero extension

movs__ src, dst # Move with sign extension

▪ Copy from a smaller source value to a larger destination
• First suffix letter is size of source, second suffix letter is size of destination

• Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

▪ src can be Mem or Reg; dst must be Reg

❖ Example: data shown in hex

▪ movsbl (%rax), %ebx

8

00 00 7F FF C6 1F A4 E8 ←%rax

00 00 00 00 FF FF FF 80 ←%rbx

... ?? ?? 80 ?? ?? ?? ... ← MEM
Recall, any x86-64 instruction that stores
into a 32-bit (suffix l) register zeros out
the upper 4 bytes of the register.

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

GDB Demo

❖ The movz and movs examples on a real machine!

▪ movzbq %al, %rbx

▪ movsbl (%rax), %ebx

❖ You will need to use GDB to get through Lab 2

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Setting breakpoints (break)

▪ Stepping through code (step/next and stepi/nexti)

▪ Printing out expressions (print – works with regs & vars)

▪ Examining memory (x)
9

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

10

x86-64 Programming II –
Practice

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the lesson problems (solutions at the end of class)

3) Work on the homework problems

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

11

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Practice Questions (1/2)

❖ D(Rb,Ri,S) computes address Reg[Rb]+Reg[Ri]*S+D

▪ Likely will get dereferenced, but that’s up to the instruction

▪ Default values: D = 0, Reg[Rb] = 0, Reg[Ri] = 0, S = 1

❖ Assuming %rdx contains 0xF000 and %rcx contains 0x100, what
addresses are computed by the following memory operands?

▪ 0x8(%rdx)

▪ (%rdx,%rcx)

▪ (%rdx,%rcx,4)

▪ 0x80(,%rdx,2)

12

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Autumn 2023

Practice Questions (2/2)

❖ Which of the following x86-64 instructions correctly calculates
%rax=9*%rdi?
A. leaq (,%rdi,9), %rax

B. movq (,%rdi,9), %rax

C. leaq (%rdi,%rdi,8), %rax

D. movq (%rdi,%rdi,8), %rax

13

