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Relevant Course Information

❖ hw7 due Monday, hw8 due Wednesday

❖ Lab 1b due Monday (10/16) at 11:59 pm

▪ No major programming restrictions, but should avoid magic numbers by using C 
macros (#define)

▪ For debugging, can use provided utility functions print_binary_short() and 
print_binary_long()

▪ Pay attention to the output of aisle_test and store_test – failed tests will show 
you actual vs. expected

▪ You have late day tokens available
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x86-64 Programming II
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Lesson Summary (1/2)

❖ Memory Addressing Modes: The addresses used for accessing memory 
in mov (and other) instructions can be computed in several different ways

▪ D(Rb,Ri,S) with base register, index register, scale factor, and displacement
compute the address Reg[Rb] + Reg[Ri]*S + D and is usually dereferenced by 
instructions

▪ These map well to pointer arithmetic operations

❖ Load effective address (lea) instruction used to compute addresses and 
perform basic arithmetic

▪ Doesn’t dereference the source memory operand, unlike all other instructions!

❖ Extension instructions (movz, movs) allow us to zero and sign extend data 
into longer widths
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Lesson Summary (2/2)

❖ Terminology:

▪ Memory Operand:  displacement, base register, index register, scale factor

▪ Extension instructions (movz, movs)

▪ Address computation instruction (lea)

❖ Learning Objectives:

▪ Without executing, describe the overall purpose of snippets of x86-64 assembly 
code containing arithmetic, [if-else statements, and/or loops].

▪ Use GDB tools to step through a running program and extract debugging 
information from a program’s disassembly, the state of registers, and values at 
specific memory locations.

❖ What lingering questions do you have from the lesson?
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x86-64 Programming II –
Context
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Extension Instructions (Review)

❖ movz__ src, dst # Move with zero extension

movs__ src, dst # Move with sign extension

▪ Copy from a smaller source value to a larger destination
• First suffix letter is size of source, second suffix letter is size of destination

• Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

▪ src can be Mem or Reg; dst must be Reg

❖ Example: data shown in hex

▪ movzbq %al, %rbx

7

?? ?? ?? ?? ?? ?? ?? FF ←%rax

00 00 00 00 00 00 00 FF ←%rbx
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Extension Instructions (Review)

❖ movz__ src, dst # Move with zero extension

movs__ src, dst # Move with sign extension

▪ Copy from a smaller source value to a larger destination
• First suffix letter is size of source, second suffix letter is size of destination

• Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

▪ src can be Mem or Reg; dst must be Reg

❖ Example: data shown in hex

▪ movsbl (%rax), %ebx
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00 00 7F FF C6 1F A4 E8 ←%rax

00 00 00 00 FF FF FF 80 ←%rbx

... ?? ?? 80 ?? ?? ?? ... ← MEM
Recall, any x86-64 instruction that stores 
into a 32-bit (suffix l) register zeros out 
the upper 4 bytes of the register.
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GDB Demo

❖ The movz and movs examples on a real machine!

▪ movzbq %al, %rbx

▪ movsbl (%rax), %ebx

❖ You will need to use GDB to get through Lab 2

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Setting breakpoints (break)

▪ Stepping through code (step/next and stepi/nexti)

▪ Printing out expressions (print – works with regs & vars)

▪ Examining memory (x)
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x86-64 Programming II –
Practice
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Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the lesson problems (solutions at the end of class)

3) Work on the homework problems

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support
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Practice Questions (1/2)

❖ D(Rb,Ri,S) computes address Reg[Rb]+Reg[Ri]*S+D

▪ Likely will get dereferenced, but that’s up to the instruction

▪ Default values:  D = 0, Reg[Rb] = 0, Reg[Ri] = 0, S = 1

❖ Assuming %rdx contains 0xF000 and %rcx contains 0x100, what 
addresses are computed by the following memory operands?

▪ 0x8(%rdx)

▪ (%rdx,%rcx)

▪ (%rdx,%rcx,4)

▪ 0x80(,%rdx,2)
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Practice Questions (2/2)

❖ Which of the following x86-64 instructions correctly calculates 
%rax=9*%rdi?
A. leaq (,%rdi,9), %rax

B. movq (,%rdi,9), %rax

C. leaq (%rdi,%rdi,8), %rax

D. movq (%rdi,%rdi,8), %rax
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