Memory \& Caches III CSE 351 Autumn 2023

Instructor:

Justin Hsia

Teaching Assistants:

Afifah Kashif Malak Zaki
Bhavik Soni
Naama Amiel
Cassandra Lam
Nayha Auradkar
Connie Chen
David Dai
Dawit Hailu
Ellis Haker Nikolas McNamee Pedro Amarante
Renee Ruan

Eyoel Gebre
Simran Bagaria
Will Robertson

http://xkcd.com/908/

Relevant Course Information

* No lecture on Friday for Veteran's Day!
- Rescheduled support hours will all be virtual (see Ed post \#881)
* Lab 3 due Friday (11/10)
* Lab 4 released Monday, due after Thanksgiving
- Can do Part 1 after today; will need Lesson 19 to do Part 2
* HW17 due Wednesday (11/15)
- Covers the major cache mechanics - BIG homework

Lesson Summary (1/2)

* Associativity gives us flexibility in where to place blocks in the cache
- Group E slots into sets, means there are E ways to place block within each set
- Direct-mapped is $E=1$, fully associative is $E=\#$ of slots in cache (i.e., $S=1$)
- Helps avoid conflicts in each set at the expense of slightly longer and more complex searching \& placing in the cache
- By default, we will replace the least-recently used block in a set
- Index \rightarrow Set, $S=(C / K) / E$, still $s=\log _{2}(S)$

Direct-mapped

2-way set associative 4-way set associative

Selects byte

Lesson Summary (2/2)

* Management bits

- Information needed for proper management of the cache \& its data, but not counted in the cache size
- Valid bit for validity of data
- Tag bits for identifying which block

Lesson Q\&A

* Terminology:
- Associativity: sets, fully-associative cache
- Replacement policies: least recently used (LRU)
- Cache line: cache block + management bits (valid, tag)
* Learning Objectives:
- Determine how memory addresses and data interact with the cache (i.e., cache lookups, data movement).
- Analyze how changes to cache parameters and policies affect performance metrics such as AMAT.
* What lingering questions do you have from the lesson?

Practice Questions

* We have a cache of size 2 KiB with block size of 128 B. If our cache has 2 sets, what is its associativity?
A. 2
B. 4
C. 8
D. 16
* If addresses are 16 bits wide, how wide is the Tag field?

Example Code Analysis Problem

* Assuming the cache starts cold (all blocks invalid) and sum, i, and j are stored in registers, calculate the miss rate: 100%
- $m=10$ bits, $C=64 \mathrm{~B}, K=8 \mathrm{~B}, E=2 \quad t=5 \mathrm{bits}, \mathrm{s}=2 \mathrm{bits}, k=3 \mathrm{bits}$

Cache Simulator

* https://courses.cs.washington.edu/courses/cse351/cachesim/
- From course website: Simulators \rightarrow Cache Simulator
- Allows you to play around with the effects of cache parameters and policies
- Lots of neat features like highlighting, hover text, ability to rewind and replay accesses, and copy-and-paste access patterns
* Ways to use:
- Take advantage of "explain mode" and navigable history to test your own hypotheses and answer your own questions
- Self-guided Cache Sim Demo posted along with Section 7
- Will be used in HW19 - Lab 4 Preparation

Cache Simulator Demo

* https://courses.cs.washington.edu/courses/cse351/cachesim/
- From course website: Simulators \rightarrow Cache Simulator
- Allows you to play around with the effects of cache parameters and policies
- Lots of neat features like highlighting, hover text, ability to rewind and replay accesses, and copy-and-paste access patterns
* Let's simulate the example problem from the lesson:

```
#define SIZE 8
short ar[SIZE][SIZE], sum = 0; // &ar=0x200
for (int i = 0; i < SIZE; i++)
    for (int j = 0; j < SIZE; j++)
        sum += ar[j][i];
```


Homework Question Setup

* Addresses are 13 bits wide, and the cache is two-way set-associative ($E=2$) with 4-byte block size ($K=4$) and eight sets $(S=8)$.

Set Index	Line 0						Line 1					
	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3
0	21	1	68	65	79	20	00	0	F3	29	84	55
1	43	1	74	68	65	72	21	1	63	F7	E3	D1
2	7F	1	65	20	69	74	OB	1	22	AA	BB	CC
3	29	0	27	73	20	73	3B	0	2 F	5C	93	4B
4	3D	1	61	6D	6D	79	00	0	-	-	-	-
5	2 C	0	20	77	6 F	6C	00	0	-	-	-	-
6	1A	1	66	64	61	77	2 F	1	23	24	25	F3
7	2B	1	67	0	0	0	C1	0	49	AB	DF	CC

- What are the widths of the tag, index, and offset fields?

Homework Question Setup

* Addresses are 13 bits wide, and the cache is two-way set-associative ($E=2$) with 4-byte block size ($K=4$) and eight sets $(S=8)$.

Set Index	Line 0						Line 1					
	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3
0	21	1	68	65	79	20	00	0	F3	29	84	55
1	43	1	74	68	65	72	21	1	63	F7	E3	D1
2	7F	1	65	20	69	74	OB	1	22	AA	BB	CC
3	29	0	27	73	20	73	3B	0	2 F	5 C	93	4B
4	3D	1	61	6D	6D	79	00	0	-	-	-	-
5	2 C	0	20	77	6 F	6C	00	0	-	-	-	-
6	1A	1	66	64	61	77	2 F	1	23	24	25	F3
7	2B	1	67	0	0	0	C1	0	49	AB	DF	CC

- What addresses will hit in Set 0?

Group Work Time

* During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the current lab

* Resources:
- You can revisit the lesson material
- Work together in groups and help each other out
- Course staff will circle around to provide support

