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Relevant Course Information

❖ HW21 due Friday (11/24) 

❖ Lab 4 due Monday (11/27) 

❖ Lab 5 released today, due 12/7 (last Thursday before final)

❖ Virtual section this week on memory allocation (videos)

❖ Support hour changes will be posted on Ed tonight

❖ Looking ahead

▪ Final Dec. 11-13, regrade requests Dec. 17-18

▪ Check your grades in Canvas as we go
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Lesson Summary (1/3)

❖ Garbage collection: automatically freeing space on the heap when no 
longer needed

▪ Part of an implicit memory allocator

▪ Free any memory no longer reachable by the program

▪ Done in many languages (Java, Python, etc.), but not C!

▪ Why? – C gives us access to raw pointers

• Pointer arithmetic makes it hard for the compiler to know where a block starts

• Casting could “hide” a pointer

▪ Garbage collectors for C exist, but they’re inefficient, not part of the standard
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Lesson Summary (2/3)

❖ Mark-and-Sweep is a common way of implementing a garbage collector

▪ Store a mark bit for each heap block

1. Start at root nodes (local/global variables that point to the heap)

2. Recursively mark every heap location accessible by the root nodes

3. Go through every heap block, free any unmarked blocks
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Lesson Summary (3/3)

❖ Common malloc-specific bugs:

▪ Memory leak: allocating space with malloc, but never freeing it

▪ Double-free: freeing the same block twice

▪ Accessing a freed block: using a block after it’s been freed

▪ Wrong allocation size: not allocating enough space for your data

❖ Any other memory-related bugs also apply here
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Lesson Q&A

❖ Terminology:

▪ Garbage collection:  mark-and-sweep

▪ Memory-related issues in C

❖ Learning Objectives:

▪ Explain the tradeoffs between different allocator implementations, policies, and 
strategies.

▪ Identify and debug issues such as memory leaks, incorrect pointer use, or buffer 
overflow in C programs.

❖ What lingering questions do you have from the lesson?
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Memory Allocation III – 
Practice
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Memory-Related Perils and Pitfalls in C

❖ Dereferencing a non-pointer

❖ Accessing a freed block

❖ Double-free

❖ Memory leak

❖ No bounds checking

❖ Reading uninitialized memory

❖ Referencing nonexistent variable

❖ Wrong allocation size
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Find That Bug!  (Slide 10)

10

char s[8];

int i;

gets(s);  /* reads "123456789" from stdin */ 

Error:    Program stop? Fix:no bounds checking Y check bounds
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Find That Bug!  (Slide 11)
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int* foo() {

int val = 0;

return &val;

}  

Error:    Program stop? Fix:using nonexistent var ? Allocate variable on the heap
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Find That Bug!  (Slide 12)

• N and M defined elsewhere (#define)

12

int** p;

p = (int**)malloc( N * sizeof(int) );

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc( M * sizeof(int) );

}

Error:    Program stop? Fix: p = malloc(N*sizeof(int*));Ywrong allocation size
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Find That Bug!  (Slide 13)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)
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/* return y = Ax */

int* matvec(int** A, int* x) { 

int* y = (int*)malloc( N*sizeof(int) );

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error:    Program stop? Fix:reading uninitalized mem N Zero out memory (calloc)
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Find That Bug!  (Slide 14)

❖ The classic scanf bug
▪ int scanf(const char *format)
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int val;

...

scanf("%d", val);

Error:    Program stop? Fix:dereferencing non-pointer Y Use &val instead
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Find That Bug!  (Slide 15)

15

x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

// manipulate y

free(x);

Error:    Program stop? Fix:Double-free ? free y in the last line, not x
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Find That Bug!  (Slide 16)
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x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

for (i=0; i<M; i++)

y[i] = x[i]++;

Error:    Program stop? Fix:accessing freed block Y free x at the end instead
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Find That Bug!  (Slide 17)
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typedef struct L {

int val;

struct L* next;

} list;

void foo() {

list* head = (list*) malloc( sizeof(list) );

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error:    Program stop? Fix:memory leak N free all allocated nodes
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What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible.  Which one?
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Memory Leaks with GC

❖ Not because of forgotten free — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

▪ Nullifying a variable that is no longer in use can improve performance

❖ Example: Don’t leave big data structures you’re done with in a static field

19

Root nodes

Heap nodes

not reachable
(garbage)

reachable
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Memory Allocation III – 
Context
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Debugging

“As soon as we started programming, we found to our 
 surprise that it wasn't as easy to get programs right as 
 we had thought. Debugging had to be discovered. I can 
 remember the exact instant when I realized that a large 
 part of my life from then on was going to be spent in 
 finding mistakes in my own programs.”

– Memoirs of a Computer Pioneer 
– by Maurice Wilkes
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Quick Debugging Note

❖ Staring at code until you think you spot a bug is generally not an effective 
way to debug!

▪ Of course it looks logically correct to you – you wrote it!

▪ Language like C doesn’t abstract away memory – it’s part of your program state 
that you need to keep track of
• Your code will only get longer and more complicated in the future: there’s too much to try to 

keep track of mentally

❖ Instead, start with bad/unexpected behavior to guide your search

▪ Memory bugs/“errors” can be especially tricky because they often don’t result in 
explicit errors or program stoppages
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Dealing With Memory Bugs

❖ Make use of all of the tools available to you:

▪ Pay attention to compiler warnings and errors

▪ Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

▪ valgrind is a powerful debugging and analysis utility for Linux, especially good for 
memory bugs
• Checks each individual memory reference at runtime (i.e., only detects issues with parts of code 

used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading uninitialized data, double-frees, 
and memory leaks
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Debugging Strategies

❖ You’ve got to find what works best for you

❖ Try a lot – your debugging technique should grow over time and some 
techniques will work better for different domains

▪ Print debugging

▪ Using a debugger

▪ Visualizations

▪ Generating thorough test cases/suites etc.

❖ But this isn’t what we’re here to talk about now…

24
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Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)

▪ CS actively encourages prolonged periods of mental concentration

25

• Easy to tune everything else out when you 
remain immobile just a few feet from your 
screen (and screens are getting bigger)

•  Long coding sessions and late nights are socially 
and culturally encouraged
• Hackathons are explicitly designed this way!

• Tech companies entice you to stay at work with 
free food and amenities
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Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ When your code doesn’t work, it can evoke a lot of different emotions

▪ A heightened emotional state can impede your thinking ability and scope, which 
can cause you to spiral

• Can interact with imposter syndrome, stereotype threat, and other self-esteem issues

▪ As your mood drops, this can also manifest physically in your body – bad posture, 
feeling “tense,” delaying attending to your needs or causing you to forget 
altogether

26
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Supporting Yourself While Debugging

❖ Mindfulness:  “The practice of bringing one’s attention in the present 
moment”

▪ Lots of different definitions and nuance, but we’ll stick with this broad definition 
and not the wellness craze

❖ While debugging, try to be mindful of your emotional and physical state 
as well as your current approach

▪ Are you focused on the task at hand or distracted?

▪ Am I calm and/or rested enough to be thinking “clearly?”

▪ How is my posture, breathing, and tenseness?

▪ Do I have any physical needs that I should address?

▪ What approach am I trying and why? Are there alternatives?
27
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Supporting Yourself While Debugging

❖ Try:  set a timer for <your interval of choice> 
(e.g., 15 minutes) to evaluate your state and approach

❖ If you’re distracted, feeling frustrated, tense, or need to address 
something, take a break!

▪ You will often find that you’ll make a discovery while on a break or at least recover 
from setbacks

▪ Breaks also vary wildly by individual and situation
• Make sure that you actually feel rested afterward

• e.g., make tea, work out, do chores, chat with friends, engage in hobbies, rest

28
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Supporting Yourself

❖ There are few guarantees for support, besides the support that you can 
give yourself

▪ Get comfortable in your own skin and stand up for yourself

▪ Can also find support from peers, mentors, family, friends

❖ Your wellbeing is much more important than your assignment grade, 
your GPA, your degree, your pride, or whatever else is pushing you to 
finish right now

❖ Don’t attach too much of your self-worth to programming and debugging

▪ There’s so much more that makes you a wonderful and worthwhile human being!
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Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ What are your go-to debugging strategies?

❖ What helps you when you’re stuck on a particularly hard problem?

30
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Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the current lab

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

31
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