
CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Memory Allocation III
CSE 351 Autumn 2023

Guest Instructor:
Ellis Haker

Teaching Assistants:
Afifah Kashif Malak Zaki
Bhavik Soni Naama Amiel
Cassandra Lam Nayha Auradkar
Connie Chen Nikolas McNamee
David Dai Pedro Amarante
Dawit Hailu Renee Ruan
Ellis Haker Simran Bagaria
Eyoel Gebre Will Robertson
Joshua Tan

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Relevant Course Information

❖ HW21 due Friday (11/24)

❖ Lab 4 due Monday (11/27)

❖ Lab 5 released today, due 12/7 (last Thursday before final)

❖ Virtual section this week on memory allocation (videos)

❖ Support hour changes will be posted on Ed tonight

❖ Looking ahead

▪ Final Dec. 11-13, regrade requests Dec. 17-18

▪ Check your grades in Canvas as we go

2

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

3

Memory Allocation III

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Lesson Summary (1/3)

❖ Garbage collection: automatically freeing space on the heap when no
longer needed

▪ Part of an implicit memory allocator

▪ Free any memory no longer reachable by the program

▪ Done in many languages (Java, Python, etc.), but not C!

▪ Why? – C gives us access to raw pointers

• Pointer arithmetic makes it hard for the compiler to know where a block starts

• Casting could “hide” a pointer

▪ Garbage collectors for C exist, but they’re inefficient, not part of the standard

4

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Lesson Summary (2/3)

❖ Mark-and-Sweep is a common way of implementing a garbage collector

▪ Store a mark bit for each heap block

1. Start at root nodes (local/global variables that point to the heap)

2. Recursively mark every heap location accessible by the root nodes

3. Go through every heap block, free any unmarked blocks

5

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Lesson Summary (3/3)

❖ Common malloc-specific bugs:

▪ Memory leak: allocating space with malloc, but never freeing it

▪ Double-free: freeing the same block twice

▪ Accessing a freed block: using a block after it’s been freed

▪ Wrong allocation size: not allocating enough space for your data

❖ Any other memory-related bugs also apply here

6

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Lesson Q&A

❖ Terminology:

▪ Garbage collection: mark-and-sweep

▪ Memory-related issues in C

❖ Learning Objectives:

▪ Explain the tradeoffs between different allocator implementations, policies, and
strategies.

▪ Identify and debug issues such as memory leaks, incorrect pointer use, or buffer
overflow in C programs.

❖ What lingering questions do you have from the lesson?

7

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

8

Memory Allocation III –
Practice

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Memory-Related Perils and Pitfalls in C

❖ Dereferencing a non-pointer

❖ Accessing a freed block

❖ Double-free

❖ Memory leak

❖ No bounds checking

❖ Reading uninitialized memory

❖ Referencing nonexistent variable

❖ Wrong allocation size

9

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 10)

10

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error: Program stop? Fix:no bounds checking Y check bounds

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 11)

11

int* foo() {

int val = 0;

return &val;

}

Error: Program stop? Fix:using nonexistent var ? Allocate variable on the heap

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 12)

• N and M defined elsewhere (#define)

12

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc(M * sizeof(int));

}

Error: Program stop? Fix: p = malloc(N*sizeof(int*));Ywrong allocation size

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 13)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

13

/* return y = Ax */

int* matvec(int** A, int* x) {

int* y = (int*)malloc(N*sizeof(int));

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error: Program stop? Fix:reading uninitalized mem N Zero out memory (calloc)

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 14)

❖ The classic scanf bug
▪ int scanf(const char *format)

14

int val;

...

scanf("%d", val);

Error: Program stop? Fix:dereferencing non-pointer Y Use &val instead

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 15)

15

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

// manipulate y

free(x);

Error: Program stop? Fix:Double-free ? free y in the last line, not x

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 16)

16

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

Error: Program stop? Fix:accessing freed block Y free x at the end instead

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Find That Bug! (Slide 17)

17

typedef struct L {

int val;

struct L* next;

} list;

void foo() {

list* head = (list*) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error: Program stop? Fix:memory leak N free all allocated nodes

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

What about Java or ML or Python or …?

❖ In memory-safe languages, most of these bugs are impossible

▪ Cannot perform arbitrary pointer manipulation

▪ Cannot get around the type system

▪ Array bounds checking, null pointer checking

▪ Automatic memory management

❖ But one of the bugs we saw earlier is possible. Which one?

18

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Memory Leaks with GC

❖ Not because of forgotten free — we have GC!

❖ Unneeded “leftover” roots keep objects reachable

▪ Nullifying a variable that is no longer in use can improve performance

❖ Example: Don’t leave big data structures you’re done with in a static field

19

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

20

Memory Allocation III –
Context

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Debugging

“As soon as we started programming, we found to our
 surprise that it wasn't as easy to get programs right as
 we had thought. Debugging had to be discovered. I can
 remember the exact instant when I realized that a large
 part of my life from then on was going to be spent in
 finding mistakes in my own programs.”

– Memoirs of a Computer Pioneer
– by Maurice Wilkes

21

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Quick Debugging Note

❖ Staring at code until you think you spot a bug is generally not an effective
way to debug!

▪ Of course it looks logically correct to you – you wrote it!

▪ Language like C doesn’t abstract away memory – it’s part of your program state
that you need to keep track of
• Your code will only get longer and more complicated in the future: there’s too much to try to

keep track of mentally

❖ Instead, start with bad/unexpected behavior to guide your search

▪ Memory bugs/“errors” can be especially tricky because they often don’t result in
explicit errors or program stoppages

22

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Dealing With Memory Bugs

❖ Make use of all of the tools available to you:

▪ Pay attention to compiler warnings and errors

▪ Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

▪ valgrind is a powerful debugging and analysis utility for Linux, especially good for
memory bugs
• Checks each individual memory reference at runtime (i.e., only detects issues with parts of code

used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading uninitialized data, double-frees,
and memory leaks

23

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Debugging Strategies

❖ You’ve got to find what works best for you

❖ Try a lot – your debugging technique should grow over time and some
techniques will work better for different domains

▪ Print debugging

▪ Using a debugger

▪ Visualizations

▪ Generating thorough test cases/suites etc.

❖ But this isn’t what we’re here to talk about now…

24

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)

▪ CS actively encourages prolonged periods of mental concentration

25

• Easy to tune everything else out when you
remain immobile just a few feet from your
screen (and screens are getting bigger)

• Long coding sessions and late nights are socially
and culturally encouraged
• Hackathons are explicitly designed this way!

• Tech companies entice you to stay at work with
free food and amenities

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Supporting Yourself While Debugging

❖ This is also a learning process!

❖ Why is this necessary (and difficult)?

▪ When your code doesn’t work, it can evoke a lot of different emotions

▪ A heightened emotional state can impede your thinking ability and scope, which
can cause you to spiral

• Can interact with imposter syndrome, stereotype threat, and other self-esteem issues

▪ As your mood drops, this can also manifest physically in your body – bad posture,
feeling “tense,” delaying attending to your needs or causing you to forget
altogether

26

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Supporting Yourself While Debugging

❖ Mindfulness: “The practice of bringing one’s attention in the present
moment”

▪ Lots of different definitions and nuance, but we’ll stick with this broad definition
and not the wellness craze

❖ While debugging, try to be mindful of your emotional and physical state
as well as your current approach

▪ Are you focused on the task at hand or distracted?

▪ Am I calm and/or rested enough to be thinking “clearly?”

▪ How is my posture, breathing, and tenseness?

▪ Do I have any physical needs that I should address?

▪ What approach am I trying and why? Are there alternatives?
27

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Supporting Yourself While Debugging

❖ Try: set a timer for <your interval of choice>
(e.g., 15 minutes) to evaluate your state and approach

❖ If you’re distracted, feeling frustrated, tense, or need to address
something, take a break!

▪ You will often find that you’ll make a discovery while on a break or at least recover
from setbacks

▪ Breaks also vary wildly by individual and situation
• Make sure that you actually feel rested afterward

• e.g., make tea, work out, do chores, chat with friends, engage in hobbies, rest

28

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Supporting Yourself

❖ There are few guarantees for support, besides the support that you can
give yourself

▪ Get comfortable in your own skin and stand up for yourself

▪ Can also find support from peers, mentors, family, friends

❖ Your wellbeing is much more important than your assignment grade,
your GPA, your degree, your pride, or whatever else is pushing you to
finish right now

❖ Don’t attach too much of your self-worth to programming and debugging

▪ There’s so much more that makes you a wonderful and worthwhile human being!

29

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ What are your go-to debugging strategies?

❖ What helps you when you’re stuck on a particularly hard problem?

30

CSE351V00: IntroductionL22: Memory Allocation III CSE351, Autumn 2023

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the current lab

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

31

	Slide 1: Memory Allocation III CSE 351 Autumn 2023
	Slide 2: Relevant Course Information
	Slide 3: Memory Allocation III
	Slide 4: Lesson Summary (1/3)
	Slide 5: Lesson Summary (2/3)
	Slide 6: Lesson Summary (3/3)
	Slide 7: Lesson Q&A
	Slide 8: Memory Allocation III – Practice
	Slide 9: Memory-Related Perils and Pitfalls in C
	Slide 10: Find That Bug! (Slide 10)
	Slide 11: Find That Bug! (Slide 11)
	Slide 12: Find That Bug! (Slide 12)
	Slide 13: Find That Bug! (Slide 13)
	Slide 14: Find That Bug! (Slide 14)
	Slide 15: Find That Bug! (Slide 15)
	Slide 16: Find That Bug! (Slide 16)
	Slide 17: Find That Bug! (Slide 17)
	Slide 18: What about Java or ML or Python or …?
	Slide 19: Memory Leaks with GC
	Slide 20: Memory Allocation III – Context
	Slide 21: Debugging
	Slide 22: Quick Debugging Note
	Slide 23: Dealing With Memory Bugs
	Slide 24: Debugging Strategies
	Slide 25: Supporting Yourself While Debugging
	Slide 26: Supporting Yourself While Debugging
	Slide 27: Supporting Yourself While Debugging
	Slide 28: Supporting Yourself While Debugging
	Slide 29: Supporting Yourself
	Slide 30: Discussion Question
	Slide 31: Group Work Time

