
CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java and C (condensed)
CSE 351 Autumn 2023

Instructor:
Justin Hsia

Teaching Assistants:
Afifah Kashif Malak Zaki
Bhavik Soni Naama Amiel
Cassandra Lam Nayha Auradkar
Connie Chen Nikolas McNamee
David Dai Pedro Amarante
Dawit Hailu Renee Ruan
Ellis Haker Simran Bagaria
Eyoel Gebre Will Robertson
Joshua Tan

http://xkcd.com/801/

http://xkcd.com/801/

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Relevant Course Information

❖ HW25 due Wednesday (12/6)

❖ Lab 5 due Thursday (12/7)

❖ Course evaluations now open

▪ See Ed Discussion post for links (separate for Lec and Sec)

❖ Final Exam: 12/11-13

▪ Review Session: Friday 12/8 on Zoom, 2 hours TBD

▪ Final review section on 12/7

▪ Will be structured similarly to the Midterm

2

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

3

Potential Java Data
Implementation

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java vs. C

❖ Reconnecting to Java (hello, CSE123/143!)

▪ But now you know a lot more about what really happens when we execute
programs

❖ We’ve learned about the following items in C; now we’ll see what they
look like for Java:

▪ Representation of data

▪ Pointers / references

▪ Casting

▪ Function / method calls including dynamic dispatch

4

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

The Hardware/Software Interface

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks,
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes,
Virtual Memory

5

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

These apply to execution
regardless of source language

Everything applies more generally than just C!!!

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Lecture Meta-Point

❖ CSE351 has given you a “really different feeling” about what computers
do and how programs execute

▪ Java is not a different world – it’s just a higher-level of abstraction

▪ Connect these levels via how-one-could-implement-Java in 351 terms

❖ The Java language specification provides an abstraction

▪ Tells us how code should behave for different language constructs, but we can't
easily tell how things are really represented

▪ But it is important to understand an implementation of the lower levels – useful in
thinking about your program
• None of the data representations we are going to talk about are guaranteed by Java

6

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Data in Java

❖ Integers, floats, doubles, pointers – same as C

▪ References in Java are much more constrained than C pointers in that they can only
point to [the starts of] objects

▪ Java’s portability-guarantee fixes the sizes of all types

▪ No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

❖ null is typically represented as 0 but “you can’t tell”

❖ Much more interesting:

▪ Arrays

▪ Characters and strings

▪ Objects
7

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)

▪ array.length returns value of this field

❖ Since it has this info, what can it do?

8

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)

▪ array.length returns value of this field

❖ Every access triggers a bounds-check

▪ Code is added to ensure the index is within bounds

▪ Exception if out-of-bounds

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

Discussion questions:
• What 351 concept does storing the

array size here remind you of?
• What do you think the act of

bounds-checking looks like at the
assembly level?

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Data in Java: Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)

▪ array.length returns value of this field

❖ Every access triggers a bounds-check

▪ Code is added to ensure the index is within bounds

▪ Exception if out-of-bounds

10

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Data in Java: Characters & Strings

❖ Two-byte Unicode instead of ASCII

❖ String not bounded by a '\0' (null character)

▪ Bounded by hidden length field at beginning of string

▪ All String objects read-only (vs. StringBuffer)

❖ Example: the string "CSE351"

11

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Data in Java: Objects

❖ Objects are always stored by reference, never stored “inline”

▪ In Java, all non-primitive variables are references to objects

▪ Access members using r.a notation (though just like r->a in C)

12

C:

▪ a[] stored “inline” as part of
struct

struct rec {
int i;
int a[3];
struct rec* p;

};

Java:

▪ a stored by reference in object

class Rec {
int i;
int[] a = new int[3];
Rec p;
...

}

i a p
0 4 16 24

i a p
0 4 2012

4 16

3

0

Struct vs. object
discussion questions:
• What are the

consequences for
the memory layout?

• What are the
consequences for
the field access
performance?

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Casting in C (example from Lab 5)

❖ Can cast any pointer into any other pointer

▪ Changes dereference and arithmetic behavior

13

struct block_info {
size_t size_and_tags;
struct block_info* next;
struct block_info* prev;

};
typedef struct block_info block_info;
...
int x;
block_info* b;
block_info* new_block;
...
new_block = (block_info*) ((char*) b + x);
...

Cast back into
block_info* to use as
block_info struct

Cast b into char* to
do unscaled addition

s n p

80 16 24

s n p

x

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Type-safe casting in Java

❖ Can only cast compatible object references (class hierarchy)

14

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;

Car c2 = new Boat();
Car c3 = new Vehicle();

Boat b2 = (Boat) v;
Car c4 = (Car) v2;
Car c5 = (Car) b1;

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;

Car c2 = new Boat();
Car c3 = new Vehicle();

Boat b2 = (Boat) v;
Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe casting in Java

❖ Can only cast compatible object references (class hierarchy)

15

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle

✗ Compiler error: Incompatible type – fields in Car that are not in Boat (siblings)
✗ Compiler error: Wrong direction – fields Car not in Vehicle (wheels)

✗ Runtime error: Vehicle does not contain all fields in Boat (propellers)
✓ v2 refers to a Car at runtime
✗ Compiler error: Unconvertable types – b1 is declared as type Boat

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java Object Definitions

16

class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}
...
Point p = new Point();
...

constructor

fields

method(s)

creation

Discussion question:
• How might we represent

Java objects in memory
based on what we’ve
learned in C?
Hint: think about fields
and methods separately.

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java Objects and Method Dispatch

❖ Object header : GC info, hashing info, lock info, etc.

❖ Virtual method table (vtable)

▪ Like a jump table for instance (“virtual”) methods plus other class info

▪ One table per class

▪ Each object instance contains a vtable pointer (vptr)
17

code for Point() code for samePlace()

vtable for class Point:

q
xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java Constructors

❖ When we call new: allocate space for object (data fields and references),
initialize to zero/null, and run constructor method

18

Point p = new Point(); Point* p = calloc(1,sizeof(Point));
p->header = ...;
p->vptr = &Point_vtable;
p->vptr[0](p);

Java:

p
xvptr yheader

Point object

C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java Methods

❖ Static methods are just like functions

❖ Instance methods:
▪ Have an implicit first parameter for this; and
▪ Can be overridden in subclasses

❖ The code to run when calling an instance method is chosen at runtime by
lookup in the vtable

19

p.samePlace(q); p->vptr[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Subclassing

20

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Subclassing

❖ New fields (z) added to end of fields of subclass (x, y)

▪ Point fields remain in the same place, so Point code can run on ThreeDPoint
objects without modification!

21

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

xvptr yheader

ThreeDPoint object

z

z tacked on at end

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Subclassing

❖ Method modifications:

▪ Add new pointer at end of vtable for new method “sayHi”

▪ No constructor definition, so use default Point constructor

▪ To override “samePlace”, use same vtable position

22

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

x yheader vptr

ThreeDPoint object

z

z tacked on at end

sayHi tacked on at end

constructor samePlaceThreeDPoint vtable:
(not Point)

sayHi

Old code for
constructor

New code for
samePlace

Code for
sayHi

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

code for Point()

code for Point’s samePlace()
Point vtable:

xvptr yheader

Point object

p ???

Dynamic Dispatch

23

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vptr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object

z

ThreeDPoint vtable:

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Ta-da!

❖ In CSE123 or CSE143, it may have seemed “magic” that an inherited
method could call an overridden method

▪ You were tested on this endlessly

❖ The “trick” in the implementation is this part: p->vptr[i](p,q)

▪ In the body of the pointed-to code, any calls to (other) methods of this will use
p->vptr

▪ Dispatch determined by p, not the class that defined a method

24

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

25

The Java Virtual Machine
(JVM)

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Implementing Programming Languages

❖ Many choices in programming model implementation

▪ We’ve previously discussed compilation

▪ One can also interpret

❖ Interpreters have a long history and are still in use

▪ e.g., Lisp, an early programming language, was interpreted

▪ e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, …

26Hardware

Your source code

Binary executable

Hardware

Interpreter
implementation

Interpreter binary

Your source code

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Interpreters

❖ Execute (something close to) the source code directly, meaning there is less
translation required
▪ This makes it a simpler program than a compiler and often provides more transparent error

messages

❖ Easier to run on different architectures – runs in a simulated environment that exists
only inside the interpreter process
▪ Just port the interpreter (program), and then

interpreting the source code is the same

❖ Interpreted programs tend to be
slower to execute and
harder to optimize

27Hardware

Interpreter
implementation

Interpreter binary

Your source code

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Interpreters vs. Compilers

❖ Programs that are designed for use with particular language implementations

▪ You can choose to execute code written in a particular language via either a compiler or an
interpreter, if they exist

❖ “Compiled languages” vs. “interpreted languages” a misuse of terminology

▪ But very common to hear this

▪ And has some validation in the real world (e.g., JavaScript vs. C)

❖ Some modern language implementations are a mix

▪ e.g., Java compiles to bytecode that is then interpreted

▪ Doing just-in-time (JIT) compilation of parts to assembly for performance

28

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Compiling and Running Java

1. Save your Java code in a .java file

2. To run the Java compiler:

▪ javac Foo.java

▪ The Java compiler converts Java into Java bytecodes
• Stored in a .class file

3. To execute the program stored in the bytecodes, these can be
interpreted by the Java Virtual Machine (JVM)

▪ Running the virtual machine: java Foo

▪ Loads Foo.class and interprets the bytecodes

29

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

“The JVM”

❖ Java programs are usually run by a Java virtual machine (JVM)

▪ JVMs interpret an intermediate language called Java bytecode

▪ Many JVMs compile bytecode to native machine code
• Just-in-time (JIT) compilation

• http://en.wikipedia.org/wiki/Just-in-time_compilation

▪ Java is sometimes compiled ahead of time (AOT) like C

30

http://en.wikipedia.org/wiki/Just-in-time_compilation

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Virtual Machine Model

31

High-Level Language Program
(e.g., Java, C)

Virtual Machine Language
(e.g., Java bytecodes)

Native Machine Language
(e.g., x86, ARM, RISC-V)

Bytecode compiler
(e.g., javac Foo.java)

Virtual machine (interpreter)
(e.g., java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Java Bytecode

❖ Like assembly code for JVM,
but works on all JVMs
▪ Hardware-independent!

❖ Typed (unlike x86 assembly)

❖ Strong JVM protections

32

0 1 2 3 4 n

variable table

operand stack

constant
pool

Holds pointer this

Other arguments to method

Other local variables

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

JVM Operand Stack

33

iload 1 // push 1st argument from table onto stack
iload 2 // push 2nd argument from table onto stack
iadd // pop top 2 elements from stack, add together, and

// push result back onto stack
istore 3 // pop result and put it into third slot in table

mov 8(%ebp), %eax
mov 12(%ebp), %edx
add %edx, %eax
mov %eax, -8(%ebp)

Compiled
to (IA32) x86:

Bytecode:

0 1 2 3 4 n

constant
pool

variable table
operand stack

JVM:

Holds pointer this

Other arguments to method
Other local variables

‘i’ = integer,
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, ...

No registers or stack locations!
All operations use operand stack

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Disassembled
Java Bytecode

34

Compiled from Employee.java
class Employee extends java.lang.Object {

public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();
public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)
0 aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 aload_0
5 aload_1
6 putfield #5 <Field java.lang.String name>
9 aload_0
10 iload_2
11 putfield #4 <Field int idNumber>
14 aload_0
15 aload_1
16 iload_2
17 invokespecial #6 <Method void

storeData(java.lang.String, int)>
20 return

Method java.lang.String getEmployeeName()
0 aload_0
1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload_0
1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)
…

> javac Employee.java
> javap -c Employee

http://en.wikipedia.org/wiki/Java
_bytecode_instruction_listings

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Other languages for JVMs

❖ JVMs run on so many computers that compilers have been built to translate many
other languages to Java bytecode:
▪ AspectJ, an aspect-oriented extension of Java

▪ ColdFusion, a scripting language compiled to Java

▪ Clojure, a functional Lisp dialect

▪ Groovy, a scripting language

▪ JavaFX Script, a scripting language for web apps

▪ JRuby, an implementation of Ruby

▪ Jython, an implementation of Python

▪ Rhino, an implementation of JavaScript

▪ Scala, an object-oriented and functional programming language

▪ And many others, even including C!

❖ Originally, JVMs were designed and built for Java (still the major use) but JVMs are
also viewed as a safe, GC’ed platform

35

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

Microsoft’s C# and .NET Framework

❖ C# has similar motivations as Java
▪ Virtual machine is called the

Common Language Runtime

▪ Common Intermediate Language
is the bytecode for C# and other
languages in the .NET framework

36

CSE351V00: IntroductionL27: Java and C CSE351, Autumn 2023

We made it! ☺😎😂

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks,
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes,
Virtual Memory

37

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

