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Relevant Course Information

❖ HW25 due Wednesday (12/6)

❖ Lab 5 due Thursday (12/7)

❖ Course evaluations now open

▪ See Ed Discussion post for links (separate for Lec and Sec)

❖ Final Exam:  12/11-13

▪ Review Session:  Friday 12/8 on Zoom, 2 hours TBD

▪ Final review section on 12/7

▪ Will be structured similarly to the Midterm
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Potential Java Data 
Implementation



CSE351V00:  IntroductionL27:  Java and C CSE351, Autumn 2023

Java vs. C

❖ Reconnecting to Java (hello, CSE123/143!)

▪ But now you know a lot more about what really happens when we execute 
programs

❖ We’ve learned about the following items in C; now we’ll see what they
look like for Java:

▪ Representation of data

▪ Pointers / references

▪ Casting

▪ Function / method calls including dynamic dispatch

4
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The Hardware/Software Interface

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, 
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks, 
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes, 
Virtual Memory
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Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

These apply to execution 
regardless of source language

Everything applies more generally than just C!!!
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Lecture Meta-Point

❖ CSE351 has given you a “really different feeling” about what computers 
do and how programs execute

▪ Java is not a different world – it’s just a higher-level of abstraction

▪ Connect these levels via how-one-could-implement-Java in 351 terms

❖ The Java language specification provides an abstraction

▪ Tells us how code should behave for different language constructs, but we can't 
easily tell how things are really represented

▪ But it is important to understand an implementation of the lower levels – useful in 
thinking about your program
• None of the data representations we are going to talk about are guaranteed by Java

6
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Data in Java

❖ Integers, floats, doubles, pointers – same as C

▪ References in Java are much more constrained than C pointers in that they can only 
point to [the starts of] objects

▪ Java’s portability-guarantee fixes the sizes of all types

▪ No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

❖ null is typically represented as 0 but “you can’t tell”

❖ Much more interesting:

▪ Arrays

▪ Characters and strings

▪ Objects
7
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Data in Java:  Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)

▪ array.length returns value of this field

❖ Since it has this info, what can it do?

8

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];



CSE351V00:  IntroductionL27:  Java and C CSE351, Autumn 2023

Data in Java:  Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)

▪ array.length returns value of this field

❖ Every access triggers a bounds-check

▪ Code is added to ensure the index is within bounds

▪ Exception if out-of-bounds

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

Discussion questions:
• What 351 concept does storing the 

array size here remind you of?
• What do you think the act of 

bounds-checking looks like at the 
assembly level?

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];
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Data in Java:  Arrays

❖ Every element initialized to 0 or null

❖ Length specified in immutable field at start of array (int: 4B)

▪ array.length returns value of this field

❖ Every access triggers a bounds-check

▪ Code is added to ensure the index is within bounds

▪ Exception if out-of-bounds

10

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field 

in register for loops
• Compiler may prove that some 

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];
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Data in Java:  Characters & Strings

❖ Two-byte Unicode instead of ASCII

❖ String not bounded by a '\0' (null character)

▪ Bounded by hidden length field at beginning of string

▪ All String objects read-only (vs. StringBuffer)

❖ Example:  the string "CSE351"

11

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8
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Data in Java:  Objects

❖ Objects are always stored by reference, never stored “inline”

▪ In Java, all non-primitive variables are references to objects

▪ Access members using r.a notation (though just like r->a in C)

12

C:

▪ a[] stored “inline” as part of 
struct

struct rec {
int i;
int a[3];
struct rec* p;

};

Java:

▪ a stored by reference in object

class Rec {
int i;
int[] a = new int[3];
Rec p;
...

}

i a p
0 4 16 24

i a p
0 4 2012

4 16

3

0

Struct vs. object 
discussion questions:
• What are the 

consequences for 
the memory layout?

• What are the 
consequences for 
the field access 
performance?
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Casting in C (example from Lab 5)

❖ Can cast any pointer into any other pointer

▪ Changes dereference and arithmetic behavior

13

struct block_info {
size_t size_and_tags;
struct block_info* next;
struct block_info* prev;

};
typedef struct block_info block_info;
...
int x;
block_info* b;
block_info* new_block; 
...
new_block = (block_info*) ( (char*) b + x );
...

Cast back into 
block_info* to use as 
block_info struct

Cast b into char* to 
do unscaled addition

s n p

80 16 24

s n p

x
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Type-safe casting in Java

❖ Can only cast compatible object references (class hierarchy)

14

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers; 

}

class Car extends Vehicle {
int wheels;

} 

class Object {
...

}

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat();    // |--> sibling
Car c1 = new Car();     // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;

Car c2 = new Boat();
Car c3 = new Vehicle();

Boat b2 = (Boat) v;
Car c4 = (Car) v2;
Car c5 = (Car) b1;
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Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat();    // |--> sibling
Car c1 = new Car();     // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;

Car c2 = new Boat();
Car c3 = new Vehicle();

Boat b2 = (Boat) v;
Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe casting in Java

❖ Can only cast compatible object references (class hierarchy)

15

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle

✗ Compiler error:  Incompatible type – fields in Car that are not in Boat (siblings)
✗ Compiler error:  Wrong direction – fields Car not in Vehicle (wheels)

✗ Runtime error:  Vehicle does not contain all fields in Boat (propellers)
✓ v2 refers to a Car at runtime
✗ Compiler error:  Unconvertable types – b1 is declared as type Boat

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers; 

}

class Car extends Vehicle {
int wheels;

} 

class Object {
...

}
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Java Object Definitions

16

class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}
...
Point p = new Point();
...

constructor

fields

method(s)

creation

Discussion question:
• How might we represent 

Java objects in memory 
based on what we’ve 
learned in C?
Hint: think about fields 
and methods separately.
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Java Objects and Method Dispatch

❖ Object header : GC info, hashing info, lock info, etc. 

❖ Virtual method table (vtable)

▪ Like a jump table for instance (“virtual”) methods plus other class info

▪ One table per class

▪ Each object instance contains a vtable pointer (vptr)
17

code for Point() code for samePlace()

vtable for class Point: 

q
xvptr yheader

Point object

p
xvptr yheader

Point object
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Java Constructors

❖ When we call new:  allocate space for object (data fields and references), 
initialize to zero/null, and run constructor method

18

Point p = new Point(); Point* p = calloc(1,sizeof(Point));
p->header = ...;
p->vptr = &Point_vtable;
p->vptr[0](p);

Java:

p
xvptr yheader

Point object

C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point: 
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Java Methods

❖ Static methods are just like functions

❖ Instance methods:
▪ Have an implicit first parameter for this; and
▪ Can be overridden in subclasses

❖ The code to run when calling an instance method is chosen at runtime by 
lookup in the vtable

19

p.samePlace(q); p->vptr[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point: 

p
xvptr yheader

Point object
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Subclassing

20

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

} 
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Subclassing

❖ New fields (z) added to end of fields of subclass (x, y)

▪ Point fields remain in the same place, so Point code can run on ThreeDPoint
objects without modification!

21

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

} 

xvptr yheader

ThreeDPoint object

z

z tacked on at end
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Subclassing

❖ Method modifications:

▪ Add new pointer at end of vtable for new method “sayHi”

▪ No constructor definition, so use default Point constructor

▪ To override “samePlace”, use same vtable position

22

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

} 

x yheader vptr

ThreeDPoint object

z

z tacked on at end

sayHi tacked on at end

constructor samePlaceThreeDPoint vtable: 
(not Point)

sayHi

Old code for 
constructor

New code for
samePlace

Code for 
sayHi
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code for Point()

code for Point’s samePlace()
Point vtable: 

xvptr yheader

Point object

p    ???

Dynamic Dispatch

23

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vptr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object

z

ThreeDPoint vtable:
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Ta-da!

❖ In CSE123 or CSE143, it may have seemed “magic” that an inherited
method could call an overridden method

▪ You were tested on this endlessly

❖ The “trick” in the implementation is this part:  p->vptr[i](p,q)

▪ In the body of the pointed-to code, any calls to (other) methods of this will use 
p->vptr

▪ Dispatch determined by p, not the class that defined a method

24
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25

The Java Virtual Machine 
(JVM)
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Implementing Programming Languages

❖ Many choices in programming model implementation

▪ We’ve previously discussed compilation

▪ One can also interpret

❖ Interpreters have a long history and are still in use

▪ e.g., Lisp, an early programming language, was interpreted

▪ e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, …

26Hardware 

Your  source code

Binary executable 

Hardware 

Interpreter 
implementation 

Interpreter binary 

Your source code
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Interpreters

❖ Execute (something close to) the source code directly, meaning there is less 
translation required
▪ This makes it a simpler program than a compiler and often provides more transparent error 

messages

❖ Easier to run on different architectures – runs in a simulated environment that exists 
only inside the interpreter process
▪ Just port the interpreter (program), and then

interpreting the source code is the same

❖ Interpreted programs tend to be 
slower to execute and 
harder to optimize

27Hardware 

Interpreter 
implementation 

Interpreter binary 

Your source code
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Interpreters vs. Compilers

❖ Programs that are designed for use with particular language implementations

▪ You can choose to execute code written in a particular language via either a compiler or an 
interpreter, if they exist

❖ “Compiled languages” vs. “interpreted languages” a misuse of terminology

▪ But very common to hear this

▪ And has some validation in the real world (e.g., JavaScript vs. C)

❖ Some modern language implementations are a mix

▪ e.g., Java compiles to bytecode that is then interpreted

▪ Doing just-in-time (JIT) compilation of parts to assembly for performance

28
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Compiling and Running Java

1. Save your Java code in a .java file

2. To run the Java compiler:

▪ javac Foo.java

▪ The Java compiler converts Java into Java bytecodes
• Stored in a .class file

3. To execute the program stored in the bytecodes, these can be 
interpreted by the Java Virtual Machine (JVM)

▪ Running the virtual machine:  java Foo

▪ Loads Foo.class and interprets the bytecodes

29
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“The JVM”

❖ Java programs are usually run by a Java virtual machine (JVM)

▪ JVMs interpret an intermediate language called Java bytecode

▪ Many JVMs compile bytecode to native machine code 
• Just-in-time (JIT) compilation

• http://en.wikipedia.org/wiki/Just-in-time_compilation

▪ Java is sometimes compiled ahead of time (AOT) like C

30

http://en.wikipedia.org/wiki/Just-in-time_compilation
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Virtual Machine Model

31

High-Level Language Program
(e.g., Java, C) 

Virtual Machine Language
(e.g., Java bytecodes)

Native Machine Language
(e.g., x86, ARM, RISC-V)

Bytecode compiler
(e.g., javac Foo.java)

Virtual machine (interpreter)
(e.g., java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time
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Java Bytecode

❖ Like assembly code for JVM,
but works on all JVMs
▪ Hardware-independent!

❖ Typed (unlike x86 assembly)

❖ Strong JVM protections

32

0 1 2 3 4 n

variable table

operand stack

constant
pool

Holds pointer this

Other arguments to method

Other local variables
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JVM Operand Stack

33

iload 1 // push 1st argument from table onto stack
iload 2 // push 2nd argument from table onto stack
iadd // pop top 2 elements from stack, add together, and

// push result back onto stack
istore 3 // pop result and put it into third slot in table

mov 8(%ebp),  %eax
mov 12(%ebp), %edx
add %edx, %eax
mov %eax, -8(%ebp)

Compiled
to (IA32) x86:

Bytecode:

0 1 2 3 4 n

constant
pool

variable table
operand stack

JVM:

Holds pointer this

Other arguments to method
Other local variables

‘i’ = integer,
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, ...

No registers or stack locations!
All operations use operand stack
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Disassembled
Java Bytecode

34

Compiled from Employee.java
class Employee extends java.lang.Object {

public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();
public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)
0 aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 aload_0
5 aload_1
6 putfield #5 <Field java.lang.String name>
9 aload_0
10 iload_2
11 putfield #4 <Field int idNumber>
14 aload_0
15 aload_1
16 iload_2
17 invokespecial #6 <Method void 

storeData(java.lang.String, int)>
20 return

Method java.lang.String getEmployeeName()
0 aload_0
1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload_0
1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)
…

> javac Employee.java
> javap -c Employee

http://en.wikipedia.org/wiki/Java
_bytecode_instruction_listings

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
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Other languages for JVMs

❖ JVMs run on so many computers that compilers have been built to translate many 
other languages to Java bytecode:
▪ AspectJ, an aspect-oriented extension of Java

▪ ColdFusion, a scripting language compiled to Java

▪ Clojure, a functional Lisp dialect

▪ Groovy, a scripting language

▪ JavaFX Script, a scripting language for web apps

▪ JRuby, an implementation of Ruby

▪ Jython, an implementation of Python

▪ Rhino, an implementation of JavaScript

▪ Scala, an object-oriented and functional programming language

▪ And many others, even including C!

❖ Originally, JVMs were designed and built for Java (still the major use) but JVMs are 
also viewed as a safe, GC’ed platform

35
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Microsoft’s C# and .NET Framework

❖ C# has similar motivations as Java
▪ Virtual machine is called the 

Common Language Runtime

▪ Common Intermediate Language 
is the bytecode for C# and other 
languages in the .NET framework

36
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We made it! ☺😎😂

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point, 
Arrays, Structs

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks, 
Executables

❖ Topic Group 3: Scale & Coherence

▪ Caches, Memory Allocation, Processes, 
Virtual Memory

37

⋮

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮


