The Hardware/Software Interface CSE 351 Winter 2024

Instructor:

Justin Hsia

Teaching Assistants:

Adithi Raghavan Aman Mohammed Connie Chen Eyoel Gebre Jiawei Huang Malak Zaki Naama Amiel Nathan Khuat Nikolas McNamee Pedro Amarante Will Robertson AN X64 PROCESSOR IS SCREAMING ALONG AT BILLIONS OF CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANTICALLY WORKING THROUGH ALL THE POSIX-SPECIFIED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERLYING OS X, WHICH IN TURN IS STRAINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A RASH OBJECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

> BECAUSE I WANTED TO SEE A CAT JUMP INTO A BOX AND FALL OVER.

I AM A GOD.

http://xkcd.com/676/

✤ TAs:

Course Staff

- Instructor: just call me Justin
 - CSE Associate Teaching Professor
 - Raising a toddler takes up energy and dictates my schedule
 - Image: Second second
- More than anything, we want you to feel...
 - ✓ Comfortable and welcome in this space
 - ✓ Able to learn and succeed in this course
 - ✓ Comfortable reaching out if you need help or want change

Bookmarks

- & Website: <u>https://courses.cs.washington.edu/courses/cse351/24wi/</u>
 - Schedule, policies, materials, tutorials, assignment specs, etc.
- & Ed Course: <u>https://edstem.org/us/courses/50549/</u>
 - Discussion: announcements, ask and answer questions
 - Lessons: lessons, practice problems, homework
- Linked from website and Ed
 - Canvas: surveys, grade book, Zoom links
 - Gradescope: lab submissions, take-home exams
 - Panopto: lecture recordings

Grading

Lesson Problems: 6%

- Can reveal solution after one attempt (completion)
- Homework: 20% total
 - Unlimited submission attempts (autograded correctness)
- Labs: 40% total
 - Last submission graded (correctness)
- ✤ Exams: Midterm (16%) and Final (16%)
 - Take-home; individual, but some discussion permitted
- EPA: Effort, Participation, and Altruism (2%)

Support Hours

- Check Weekly Calendar on website for scheduled support hours:
 - In-person or virtual, but NOT hybrid
 - Zoom meeting links found in Zoom tab within Canvas

< >		Sep 2	6 – Oct 1, 2022	2		Compact Week Li
Sun 9/25	Mon 9/26	Tue 9/27	Wed 9/28	Thu 9/29	Fri 9/30	Sat 10/1
	Summer Break		Rd01 Due	Section	HW0 Due	
			11:30a - 12:20p Lecture A Introduction: Binary CSE2 620	8a - 9a Office Hours TBD	Pre-Survey Due	
			12:30p - 1:20p Lecture B	3:30p - 4:30p Office Hours ^{Clare & David}	Rd02 Due	

- ✤ All support hours will use a Google Sheets queue:
 - Fill out first 3 columns to enter queue:

Name(s)	Category	Description	Time Queued	Staff	Status	
Example 1	Concept 👻	Question about floating point encoding range.		Justin	Done	*
Example 2	Debugging 👻	Lab 5: running into a segfault in mm_malloc after reaching end of the heap.		Justin	Done	~
Example 3	Spec 👻	Lab 1a: confusion over within same block examples		Justin	Done	*
Example 4	Tools 👻	GDB: how do I examine memory on the stack?		Justin	Done	~

We encourage you to chat with other students if the TAs are busy!

In-Person Support Hours

- Allen 3rd & 4th floor breakouts
 - Up the stairs in the CSE Atrium (Allen Center, not Gates)

The open areas with the whiteboard walls are the breakouts!

Lecture Polls and Discussions

- Increase learning, test your understanding, increase student interactions, makes the class more engaging and fun
 - Lot of research supports its effectiveness:
- Polls on technical material will be multiple-choice and short answer
 - You haven't mastered the material yet; mistakes are part of the process!
- Discussion questions will be more open-ended
 - Be respectful of others' opinions and experiences
- Respond on Lecture Ed lesson for credit (extra late day tokens) and we will use *random call* to solicit live responses from audience
 - Don't need to be correct, just want the feedback of what was discussed

To-Do List

Admin

- Explore/read the course website *thoroughly*, especially the syllabus
- Check that you can access Ed Discussion & Lessons
- Get your machine set up to access the CSE Linux environment (attu or cancun) as soon as possible
- Optionally, sign up for CSE 391: System and Software Tools
- Assignments
 - Pre-Course Survey and hw0 due Friday (1/5)
 - HW1 and Lab 0 due Monday (1/8)
 - Lessons quiz questions due 11:59 pm after the associated lecture

Lesson Summary

- Humans think about numbers in decimal; computers think about numbers in binary
 - Base conversion: digit d in position i in base b has a decimal value of $d \times b^i$
 - Changing bases does *not* change the value; just a different representation
 - Hexadecimal (base 16, prefix 0x) is more human-readable than binary (base 2, prefix 0b)
 - Unit of data in a computer is 1 byte = 8 bits = 2 hex digits
- Binary encoding can represent anything!
 - Computer/program needs to know how to interpret the bits

Base 10	Base 2	Base 16					
0	0b0000	0x0					
1	0b0001	0x1					
2	0b0010	0x2					
3	0b0011	0x3					
4	0b0100	0x4					
5	0b0101	0x5					
6	0b0110	0x6					
7	0b0111	0x7					
8	0b1000	0x8					
9	0b1001	0x9					
10	0b1010	ØxA					
11	0b1011	ØxB					
12	0b1100	ØxC					
13	0b1101	ØxD					
14	0b1110	ØxE					
15	0b1111	0xF					

Lesson Q&A

- Learning Objectives:
 - Convert between binary, decimal, and hexadecimal number representations.
 - Given an encoding scheme, decode and encode binary to/from its intended representation.
 - Identify limitations of given encoding schemes.
- What lingering questions do you have from the lesson?
 - Introduce yourself to your neighbors and chat about the lesson for a few minutes to come up with questions

Polling Questions

- What is the *decimal value* of the numeral 107₈?
 - A. 71
 - **B. 87**
 - **C. 107**
 - **D.** 568
- Represent 0b100110110101101
 in hex.

- What is the decimal number 108 in hex?
 - A. 0x6C
 - **B.** 0xA8
 - **C. 0x108**
 - D. 0x612
- Represent 0x3C9 in binary.

Homework Setup

Binary alphabet using five 4-bit numbers stacked on top of each other:

What string of 5 hex digits represents a "C"?

Why Base 2?

- Electronic implementation
 - Easy to store with bi-stable elements
 - Reliably transmitted on noisy and inaccurate wires

- Other bases possible, but not yet viable:
 - DNA data storage (base 4: A, C, G, T) is hot @UW
 - Quantum computing

Binary Encoding – Colors

- RGB Red, Green, Blue
 - Additive color model (light): byte (8 bits) for each color
 - Commonly seen in hex (in HTML, photo editing, etc.)
 - <u>Examples</u>: Blue→0x0000FF, Gold→0xFFD700, White→0xFFFFFF, Deep Pink→0xFF1493

Binary Encoding – Characters/Text

ASCII Encoding (<u>www.asciitable.com</u>)

American Standard Code for Information Interchange

<u>Dec</u>	H)	Oct	Char		Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html C	hr
0	0	000	NUL	(null)	32	20	040	∉ #32;	Space	64	40	100	«#64;	0	96	60	140	`	1
1	1	001	SOH	(start of heading)	33	21	041	!	1	65	41	101	A	A	97	61	141	 ∉#97;	а
2	2	002	STX	(start of text)	34	22	042	"	"	66	42	102	B	в	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	#	#	67	43	103	C	С	99	63	143	c	С
4	4	004	EOT	(end of transmission)	36	24	044	 ∉36;	ę.	68	44	104	∝#68;	D	100	64	1°	*100;	d
5	5	005	ENQ	(enquiry)	37	25	045	 ∉37;	\$	69	45	105	∝#69;	Е	101	65	1.25	101;	е
6	6	006	ACK	(acknowledge)	38	26	046	 ∉38;	6	70	46	106	≪#70;	F	102	RE	46	102;	f
- 7	7	007	BEL	(bell)	39	27	047	≪# 39;	1	71	47	107	~ 71;	G	107	4.	47	#103;	g
8	8	010	BS	(backspace)	40	28	050	∝#40;	(72	48	110	72		14		150	104;	h
9	9	011	TAB	(horizontal tab)	41	29	051))	73	49	10	6. 3,		5			i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	*	*	74	4	2	6)		1		· /	j	j
11	в	013	VT	(vertical tab)	43	2B	053	6#43			2R	-	ŧ.	-	107	65	153	k	k
12	С	014	FF	(NP form feed, new page)	44	2C	0	∿#44		20			#76;	L	108	6C	154	 ‰#108;	: 1
13	D	015	CR	(carriage return)	45	2D	0	'4!		7'		115	M	М	109	6D	155	m	m
14	Ε	016	S0 -	(shift out)	20	2E	05	Se.,	-	/8	4E	116	 ∉78;	N	110	6E	156	n	n
15	F	017	SI	(shift in)		$2\mathbf{F}$	05%	#	\sim	79	4F	117	∝#79;	0	111	6F	157	o	0
16	10	020	DLE	(data link escap			060	48;	0	80	50	120	 ∉#80;	Р	112	70	160	p	p
17	11	021	DC1	(dictice cor t)		-	061	1	1	81	51	121	∝#81;	Q	113	71	161	∉#113;	q
18	12	022	DC2	e vncr)	50	32	062	∝#50;	2	82	52	122	 ∉82;	R	114	72	162	r	r
19	13	023	.3	eve n 🔍	51	33	063	3	3	83	53	123	∝#83;	S	115	73	163	s	3
20	14	24		ev. (troi 4)	52	34	064	4	4	84	54	124	∝# 84;	Т	116	74	164	t	t
21	15	5	4	ga 🗾 7e acknowledge)	53	35	065	∝#53;	5	85	55	125	∝#85;	U	117	75	165	u	u
22	16	0.	(N)	nchronous idle)	54	36	066	∝#54;	6	86	56	126	∝#86;	V	118	76	166	∝#118;	v
23	17	02.	∠1B	(end of trans. block)	55	37	067	∝#55;	7	87	57	127	 ∉87;	W	119	77	167	w	W
24	18	030	CAN	(cancel)	56	38	070	8	8	88	58	130	X	X	120	78	170	x	×
25	19	031	EM	(end of medium)	57	39	071	∝#57;	9	89	59	131	∝#89;	Y	121	79	171	y	Y
26	1A	032	SUB	(substitute)	58	ЗA	072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27	1B	033	ESC	(escape)	59	ЗB	073	∝#59;	2 - C	91	5B	133	∝#91;	[123	7B	173	∝#123;	: {
28	1C	034	FS	(file separator)	60	ЗC	074	<	<	92	5C	134	\	<u>\</u>	124	7C	174		
29	1D	035	GS	(group separator)	61	ЗD	075	l;	=	93	5D	135	¢#93;]	125	7D	175	}	<pre>}</pre>
30	lE	036	RS	(record separator)	62	ЗE	076	>	>	94	5E	136	«#94;	<u>^</u>	126	7E	176	~	
31	lF	037	US	(unit separator)	63	ЗF	077	≪#63;	2	95	5F	137	 ∉95;	_	127	7F	177		DEL

Binary Encoding – Characters/Text

- ASCII Encoding (<u>www.asciitable.com</u>)
 - American Standard Code for Information Interchange
- Created in 1963
 - Memory was expensive, 32KB in brand new machines
 - Economic incentive to use fewer bits for encoding

* Design Goals:

- Represent everything on an American typewriter as efficiently as possible
- Organize similar characters together
 - Numbers, uppercase, lowercase, then other stuff

Binary Encoding – Unicode & Emoji

- Unicode Standard is managed by the Unicode Consortium
 - "Universal language" that uses 1-4 bytes to represent a much larger range of characters/languages, including emoji
 - Adds new emojis every year, though adoption often lags: 2 (ninja)
 - <u>https://emojipedia.org/new/</u>
- Emojipedia demo: <u>http://www.emojipedia.org</u>

 - Code points: U+1F32E
 - Display (as of 2023):

Discussion Question

- Discuss the following question(s) in groups of 3-4 students
 - I will call on a few groups afterwards so please be prepared to share out
 - Be respectful of others' opinions and experiences
- The Unicode Consortium publicly solicits proposals from the public for new emoji to add to future standards
 - What do you think some of the decision factors are (or should be) in how many and which ones to add?
 - Voting is done by a combination of paid members consisting of companies, institutions, and individuals – how do you feel about who has control and how they gained that control?
 - <u>https://home.unicode.org/membership/members/</u>

Group Work Time

- During this time, you are encouraged to work on the following:
 - 1) If desired, continue your discussion
 - 2) Work on the homework problems
 - 3) Work on the lab (if applicable)
- Resources:
 - You can revisit the lesson material
 - Work together in groups and help each other out
 - Course staff will circle around to provide support