The Hardware/Software Interface

CSE 351 Winter 2024

Instructor:

Justin Hsia

Teaching Assistants:

Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

AN $\times 64$ PROCESSOR IS SCREAMING ALONG AT BLLIONS OF CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANTICALLY WORKING THROUGH PLL THE POSIX-SPECIFED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERIYING $05 \times$, WHICH IN TURN IS STRPINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A PASH OBTECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT JUMP INTO A BOX AND FALL OVER.

Course Staff

* Instructor: just call me Justin
- CSE Associate Teaching Professor
- Raising a toddler takes up energy and dictates my schedule

* TAs:

* More than anything, we want you to feel...
\checkmark Comfortable and welcome in this space
\checkmark Able to learn and succeed in this course
\checkmark Comfortable reaching out if you need help or want change

Bookmarks

* Website: https://courses.cs.washington.edu/courses/cse351/24wi/
- Schedule, policies, materials, tutorials, assignment specs, etc.
* Ed Course: https://edstem.org/us/courses/50549/
- Discussion: announcements, ask and answer questions
- Lessons: lessons, practice problems, homework
* Linked from website and Ed
- Canvas: surveys, grade book, Zoom links
- Gradescope: lab submissions, take-home exams
- Panopto: lecture recordings

Grading

＊Lesson Problems：6\％
－Can reveal solution after one attempt（completion）
＊Homework：20\％total
－Unlimited submission attempts（autograded correctness）
＊Labs：40\％total
－Last submission graded（correctness）
＊Exams：Midterm（16\％）and Final（16\％）
－Take－home；individual，but some discussion permitted
＊EPA：Effort，Participation，and Altruism（2\％）

Support Hours

* Check Weekly Calendar on website for scheduled support hours:
- In-person or virtual, but NOT hybrid
- Zoom meeting links found in Zoom tab within Canvas

* All support hours will use a Google Sheets queue:
- Fill out first 3 columns to enter queue:

Name(s)	Category	Description	Time Queued	Staff	Status	
Example 1	Concept -	Question about floating point encoding range.		Justin	Done	-
Example 2	Debugging -	Lab 5: running into a segfault in mm_malloc after reaching end of the heap.		Justin	Done	-
Example 3	Spec	Lab 1a: confusion over within same block examples		Justin	Done	-
Example 4	Tools -	GDB: how do l examine memory on the stack?		Justin	Done	-

* We encourage you to chat with other students if the TAs are busy!

In-Person Support Hours

$*$ Allen $3^{\text {rd }} \& 4^{\text {th }}$ floor breakouts

- Up the stairs in the CSE Atrium (Allen Center, not Gates)
- The open areas with the whiteboard walls are the breakouts!

Lecture Polls and Discussions

* Increase learning, test your understanding, increase student interactions, makes the class more engaging and fun
- Lot of research supports its effectiveness:
* Polls on technical material will be multiple-choice and short answer
- You haven't mastered the material yet; mistakes are part of the process!
* Discussion questions will be more open-ended
- Be respectful of others' opinions and experiences
* Respond on Lecture Ed lesson for credit (extra late day tokens) and we will use random call to solicit live responses from audience
- Don't need to be correct, just want the feedback of what was discussed

To-Do List

* Admin
- Explore/read the course website thoroughly, especially the syllabus
- Check that you can access Ed Discussion \& Lessons
- Get your machine set up to access the CSE Linux environment (attu or cancun) as soon as possible
- Optionally, sign up for CSE 391: System and Software Tools
* Assignments
- Pre-Course Survey and hw0 due Friday (1/5)
- HW1 and Lab 0 due Monday (1/8)
- Lessons quiz questions due 11:59 pm after the associated lecture

Lesson Summary

*Humans think about numbers in decimal; computers think about numbers in binary

- Base conversion: digit d in position i in base b has a decimal value of $d \times b^{i}$
- Changing bases does not change the value; just a different representation
- Hexadecimal (base 16, prefix 0x) is more human-readable than binary (base 2, prefix 0b)
- Unit of data in a computer is $\mathbf{1}$ byte $\mathbf{=} \mathbf{8}$ bits $=2$ hex digits
* Binary encoding can represent anything!

Base 10	Base 2	Base 16
0	$0 b 0000$	0×0
1	$0 b 0001$	0×1
2	$0 b 0010$	0×2
3	$0 b 0011$	0×3
4	$0 b 0100$	0×4
5	$0 b 0101$	0×5
6	$0 b 0110$	0×6
7	$0 b 0111$	0×7
8	$0 b 1000$	0×8
9	$0 b 1001$	0×9
10	$0 b 1010$	$0 \times A$
11	$0 b 1011$	$0 \times B$
12	$0 b 1100$	$0 \times C$
13	$0 b 1101$	$0 \times D$
14	$0 b 1110$	$0 \times E$
15	$0 b 1111$	$0 \times F$

- Computer/program needs to know how to interpret the bits

Lesson Q\&A

* Learning Objectives:
- Convert between binary, decimal, and hexadecimal number representations.
- Given an encoding scheme, decode and encode binary to/from its intended representation.
- Identify limitations of given encoding schemes.
* What lingering questions do you have from the lesson?
- Introduce yourself to your neighbors and chat about the lesson for a few minutes to come up with questions

Polling Questions

* What is the decimal value of the numeral 1078 ?
A. 71
B. 87
C. 107
D. 568
* Represent Ob100110110101101 in hex.
* What is the decimal number 108 in hex?
A. $0 \times 6 \mathrm{C}$
B. 0xA8
C. 0×108
D. 0×612
* Represent 0x3C9 in binary.

Homework Setup

* Binary alphabet using five 4-bit numbers stacked on top of each other:

* What string of 5 hex digits represents a " C "?

Binary anc Numerical

Representation = Context

Why Base 2?

* Electronic implementation
- Easy to store with bi-stable elements
- Reliably transmitted on noisy and inaccurate wires

* Other bases possible, but not yet viable:
- DNA data storage (base 4: A, C, G, T) is hot @UW
- Quantum computing

Binary Encoding - Colors

* RGB - Red, Green, Blue
- Additive color model (light): byte (8 bits) for each color
- Commonly seen in hex (in HTML, photo editing, etc.)
- Examples: Blue $\rightarrow 0 x 0000$ FF, Gold $\rightarrow 0 x F F D 700$, Whifie $\rightarrow 0 x F F F F F F$, Deep Pink \rightarrow OxFF1493

Binary Encoding - Characters/Text

* ASCII Encoding (www.asciitable.com)

- American Standard Code for Information Interchange

	Hx Oct Char		Dec Hx Oct Html Chr	Dec Hx Oct Html chr\|	Dec Hx Oct	Html chr
	0000 NUL	(null)	3220040 \&\#32; Space	6440100 ¢\#64; 0	9660140	\&\#96;
	100150 H	(start of heading)	3321041 \&\#33;	6541101 ¢\#65; A	9761141	\&\#97;
2	2002 STX	(start of text)	3422042 \&\#34;	6642102 \& \#66; B	9862142	\&\#98;
3	3003 ETX	(end of text)	3523043 \&\#35; \#	6743103 \&\#67; C	9963143	\&\#99; c
4	4004 EOT	(end of transmission)	3624044 \&\#36;	6844104 \& ${ }^{6} 68$; D	100641	+100;
5	5005 ENQ	(enquiry)	3725045 \&\#37;	6945105 \&\#69; E	1016514	.01;
6	6006 ACK	(acknowledge)	3826046 \&\#38;	7046106 ¢\#70; F	102 EC	102;
7	7007 BEL	(bell)	3927047 \&\#39;	$7147107-471$		103:
8	8010 BS	(backspace)	4028050 \&\#40;	7248110	0	04;
9	9011 TAB	(horizontal tab)	4129051 ¢\#41;	7349		\&\#105;
	A 012 LF	(NL line feed, new line)	42 2A 052 \&\#42			\&\#106;
11	B 013 VT	(vertical tab)	43 2B 053		107 bo 153	\&\#107; k
	C 014 FF	(NP form feed, new page)	44 2C	776; L	108 6C 154	\&\#108; 1
	D 015 CR	(carriage return)	45 2D 0	\&\#77;	109 6D 155	\&\#109;
14	E 016 S0	(shift out)	E 05	4E 116 \&\#78; N	1106 E 156	\&\#110; n
15	F 017 SI	(shift in)	05	79 4F 117 \& 7 79; 0	1116 F 157	\&\#111;
	10020 DLE	(data link	060-348; 0	8050120 \& \#80; P	11270160	\&\#112; p
	11021 DCl	(d) ce cor	061 \&\#49; 1	8151121 ¢\#81; 0	11371161	\&\#113; q
	12022		5032062 \&\#50; 2	8252122 \&\#82; R	11472162	\&\#114;
19	23		5133063 \&\#51; 3	8353123 ¢\#83; 5	11573163	\&\#115;
20			5234064 ¢\#52; 4	8454124 \& \#84; T	11674164	\&\#116;
21		ga re acknowledge)	5335065 \&\#53; 5	8555125 \&\#85; U	11775165	\&\#117;
22		nchronous idle)	5436066 \&\#54; 6	8656126 \&\#86; V	11876166	\&\#118; v
	17 02. B	(end of trans. block)	5537067 \&\#55; 7	8757127 ¢\#87; W	11977167	\&\#119;
	18030 CAN	(cancel)	5638070 ¢\#56; 8	8858130 \&\#88; X	12078170	¢\#120;
	19031 EM	(end of medium)	5739071 \&\#57; 9	8959131 ¢\#89; Y	12179171	\&\#121; Y
	1A 032 SUB	(substitute)	58 3A 072 \&\#58	90 5A 132 \& \#90; Z	122 7A 172	\&\#122;
27	1B 033 ESC	(escape)	59 3B 073 \&\#59;	91 5B 133 \&\#91; [123 7B 173	\&\#123;
	1C 034 FS	(file separator)	60 3C 074 \&\#60; <	92 5C 134 \&\#92;	1247 C 174	\&\#124;
	1D 035 GS	(group separator)	61 3D 075 \&\#61;	93 5D 135 \&\#93;]	1257 D 175	\&\#125;
	1E 036 RS	(record separator)	62 3E 076 \&\#62; >	94 5E 136 \& \#94;	1267 E 176	\&\#126;
31	1F 037 US	(unit separator)	63 3F 077 \&\#63;	95 5F 137\&\#95;	$127 \quad 7 \mathrm{~F} 177$	\&\#127; DEL

Binary Encoding - Characters/Text

* ASCII Encoding (www.asciitable.com)
- American Standard Code for Information Interchange
* Created in 1963
- Memory was expensive, 32 KB in brand new machines
- Economic incentive to use fewer bits for encoding
* Design Goals:
- Represent everything on an American typewriter as efficiently as possible
- Organize similar characters together
- Numbers, uppercase, lowercase, then other stuff

Binary Encoding - Unicode \& Emoji

* Unicode Standard is managed by the Unicode Consortium
- "Universal language" that uses 1-4 bytes to represent a much larger range of characters/languages, including emoji
- Adds new emojis every year, though adoption often lags: (ninja)
- https://emojipedia.org/new/
* Emojipedia demo: http://www.emojipedia.org
- Taco: (added 2015)
- Code points: U+1F32E
- Display (as of 2023):

Apple

Google Android

Samsung

WhatsApp Twitter

Facebook

Discussion Question

* Discuss the following question(s) in groups of 3-4 students
- I will call on a few groups afterwards so please be prepared to share out
- Be respectful of others' opinions and experiences
* The Unicode Consortium publicly solicits proposals from the public for new emoji to add to future standards
- What do you think some of the decision factors are (or should be) in how many and which ones to add?
- Voting is done by a combination of paid members consisting of companies, institutions, and individuals - how do you feel about who has control and how they gained that control?
- https://home.unicode.org/membership/members/

Group Work Time

* During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

* Resources:
- You can revisit the lesson material
- Work together in groups and help each other out
- Course staff will circle around to provide support

