
CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Memory, Data, & Addressing II
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

http://xkcd.com/138/

http://xkcd.com/138/

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Relevant Course Information

❖ Lab 0 due today @ 11:59 pm

▪ You will revisit the concepts from this program in future labs!

❖ HW2 due Wednesday, HW3 due Friday

▪ Autograded, unlimited tries, no late submissions

❖ Lab 1a released today, due next Monday (1/15)

▪ Pointers in C (requires course material through bit shifting in Lesson 5)

▪ Last submission graded, can optionally work with a partner
• One student submits, then add their partner to the submission

▪ Short answer “synthesis questions” for after the lab

2

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Late Days

❖ You are given 5 late day tokens for the whole quarter

▪ Tokens can only apply to Labs

▪ Can earn up to 2 more via answering lecture polling questions

❖ Count lateness in days (even if just by a second)

▪ Special: weekends count as one day

▪ No submissions accepted more than two days late

❖ Late penalty is 10% deduction of your score per day

▪ Only late labs are eligible for penalties

▪ Penalties applied at end of quarter to maximize your grade

❖ Use at own risk – don’t want to fall too far behind

▪ Intended to allow for unexpected circumstances
3

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

4

Memory & Data II

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Lesson Summary (1/2)

❖ Pointers are data objects that hold addresses

▪ Type of pointer determines size of thing being pointed at, which could be another
pointer

▪ & = “address of” operator

▪ * = “value at address” or “dereference” operator

▪ NULL is a constant for a pointer to “nothing”

❖ Can visualize using box-and-arrow diagrams:

5

0x7ff…6584 351ptr x

0x7ff…65840x7ff…7bf8

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Lesson Summary (2/2)

❖ Arrays are adjacent locations in memory storing the same type of data

▪ Strings are null-terminated arrays of characters (ASCII)

❖ Pointer arithmetic scales by size of target type

▪ Convenient when accessing array-like structures in memory: a[i]↔ *(a + i)

▪ Be careful when using – particularly when casting variables

6

str 0x33 0x35 0x31 0x00

&str → 0x7ff…7bf8;

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Define pointers and their significance in computer memory organization.

▪ Declare, initialize, and manipulate pointers in C using address-of, dereference, and
arithmetic operators.

▪ Handle I/O operations with C strings, accounting for the null character.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with
questions

7

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

8

Memory & Data II –
Practice

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Polling Questions (1/2)

❖ int x = 351;
char* p = &x;
int ar[3];

❖ How much space does the
variable p take up?

A. 1 byte

B. 2 bytes

C. 4 bytes

D. 8 bytes

9

❖ Which of the following
expressions evaluate to an
address?

A. x + 10

B. p + 10

C. &x + 10

D. *(&p)

E. ar[1]

F. &ar[2]

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Polling Questions (2/2)

❖ The variable values after Line 3 executes are shown on the right. What
are they after Line 5?

10

0x101 0x5 0x11(A)

0x104 0x5 0x11(B)

0x101 0x6 0x10(C)

(D)

p a[0] a[1]

1 void main() {
2 int a[] = {0x5,0x10};
3 int* p = a;
4 p = p + 1;
5 *p = *p + 1;
6 }

0x100a[0]

a[1]

p

5
10

100

...

Address
(hex)

Data
(hex)

p a[0] a[1]

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Homework Setup

❖ How much memory (in bytes) is allocated for the following?

▪ short s;

▪ short* p;

▪ short ar[351];

▪ "short"

11

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

12

Memory & Data II –
Context

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Examining Data Representations

❖ Code to print byte representation of data

▪ Treat any data type as a byte array by casting its address to char*

▪ C has unchecked casts !! DANGER !!

❖ printf legend:

▪ Special characters: \t = Tab, \n = newline

▪ Format specifiers: %p = pointer,
%.2hhX = 1 byte (hh) in hex (X), padding to 2 digits (.2)

13

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)

printf("%p\t0x%.2hhX\n", start+i, *(start+i));
printf("\n");

}

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Examining Data Representations

❖ Code to print byte representation of data

▪ Treat any data type as a byte array by casting its address to char*

▪ C has unchecked casts !! DANGER !!

14

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)

printf("%p\t0x%.2hhX\n", start+i, *(start+i));
printf("\n");

}

void show_int(int x) {
show_bytes((char*) &x, sizeof(int));

}

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

show_bytes Execution Example

❖ Result (Linux x86-64):

▪ Note: The addresses will change on each run (try it!), but fall in same general
range

15

int x = 123456; // 0x00 01 E2 40

printf("int x = %d;\n", x);

show_int(x); // show_bytes((char*) &x, sizeof(int));

int x = 123456;

0x7fffb245549c 0x40

0x7fffb245549d 0xE2

0x7fffb245549e 0x01

0x7fffb245549f 0x00

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Java References

❖ In Java, everything that is not a primitive data type is an object

▪ An object variable is actually a “reference” – a restricted pointer

❖ Reference restrictions:

▪ No pointer arithmetic, just reassignment
• Reassignment must adhere to rules set by typing system (e.g., inheritance)

▪ References can only be “dereferenced” in ways that match class definition
• e.g., calling a method, accessing a field in object

❖ All higher-level languages use pointers/addresses under the hood, but
likely abstracted away from the programmer

16

class Record { ... }
Record x = new Record();

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Discussion Question

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Brainstorm some reasons why you think the designers of C (released in
1972) gave its programmers access to “raw” pointers.

▪ What might these reasons say about the implicit values embedded in C?

17

CSE351V00: IntroductionL03: Memory & Data II CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the lab (if applicable)

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

18

